全球熱画像を用いた表面温度の算出

Estimation of Surface Temperature Using the Spherical Thermography

赤外線放射カメラを取り付けられた自動回転雲台をPCにより自動制御し、パン・チルト方向に回転しつつ熱画像を撮影したものである。ここでは、水平方向に13枚、垂直方向に9枚の計117枚の熱画像を撮影し、全熱画像を雲台の回転情報に従って合成することにより、全球のパノラマで表現された一枚の全球熱画像を出力した。

全球熱画像で出力する利点は、観測地点を取り囲む全周囲の放射温度分布が画像として得られることに加え、その地点に立つ人が周囲の地物から受ける熱放射量を評価できることである。すなわち、空間の放射温度分布の把握と、熱的快適性の議論が両方同時にできることになる。さらに、(a) 対象面の対向面を含む周囲4πの放射温度分布、(b) 周囲の建物形状などの3次元幾何情報、(c) 対象面の材料の分光・指向放射率・反射率、の情報があれば、熱画像を3次元化し、その3次元熱画像上において光線追跡（ライトトレーシング）計算をすることにより、対向面からの反射成分（映り込み）を除去することが可能である。すなわち、この処理により3次元表面温度分布を求めることができる（詳しくは、本誌「赤外線イメージングによる環境の可視化」を参照されたい）。

梅干野 晁（放送大学）

Akira HOYANO (The Open University of Japan)
伝 熱

目 次

〈巻頭グラビア〉
全球熱画像を用いた表面温度の算出 梅干野 晃（放送大学） 表紙裏

〈新旧会長挨拶〉
第 54 期会長就任にあたって .. 小澤 守（関西大学） 1
第 53 期を振り返って ... 岡崎 健（東京工業大学） 2

〈第 27 回日本伝熱学会賞〉
平成 26 年度日本伝熱学会賞選考の報告
………………………………………………………………………… 協議会委員会委員長 円山 重直（東北大学） 3
日本伝熱学会賞を受賞して 村上 陽一，河合 明雄（東京工業大学） 4
日本伝熱学会学術賞を受賞して
………………………………………………………………………… 松村 幸彦，井上 修平（広島大学），久保田 晴仁（中国電力），
野口 琢史（東洋高圧）川井 良文（中電プラント），井上 大空（建設調査設計） 5
日本伝熱学会技術賞を受賞して 藤原 浩介，水野 昌幸（IHI） 6
日本伝熱学会奨励賞を受賞して 永島 浩樹（琉球大学） 7
優秀プレゼンテーション賞 受賞者 — 第 52 回日本伝熱シンポジウム—
………………………………………………………………………… 学生会委員会幹事 小宮 敦樹（東北大学） 8

〈第 52 回日本伝熱シンポジウム〉
第 52 回日本伝熱シンポジウムの報告
………………………………………………………………………… 高松 洋，蕨田 裕作（九州大学），小澤 守（関西大学），
小宮 敦樹（東北大学），芹澤 良洋（新日鐵住金） 9

〈特集：赤外線サーモグラフィによる熱計測〉
赤外線サーモグラフィ装置の放射温度計としての性能と校正
………………………………………………………………………… 山田 善郎（産業技術総合研究所） 15
サーモグラフィによる温度・伝熱計測と非破壊診断 稲垣 照美（茨城大学） 21
マイクロスケール赤外線サーモグラフィ：材料科学の視点から
………………………………………………………………………… 森川 淳子（東京工業大学） 27
赤外線サーモグラファの空間分解能を簡易的に推定する方法の提案
— 微小な電子部品の温度計測に活用するために — 平沢 浩一（KOA 株式会社） 33
赤外線イメージングによる環境の可視化 梅干野 晃（放送大学） 39
赤外線サーモグラフィによる温度計測とその対流熱伝達測定への応用
………………………………………………………………………… 中村 元（防衛大学校） 47
Vol. 54, No. 228, July 2015

CONTENTS

<Opening-page Gravure:heat-page>
Estimation of Surface Temperature Using the Spherical Thermography
Akira HOYANO (The Open University of Japan) ... Opening Page

>New and Former President’s Addresses>
Inauguration Address as the 54th President
Mamoru OZAWA (Kansai University) .. 1

The 53rd Term in Retrospect
Ken OKAZAKI (Tokyo Institute of Technology) ... 2

>The 27th Heat Transfer Society Awards>
On Selection of Award of the Heat Transfer Society of Japan, 2014
Shigenao MARUYAMA (Tohoku University) ... 3

Scientific Contribution Award of the Heat Transfer Society of Japan
Yoichi MURAKAMI, Akio KAWAI (Tokyo Institute of Technology) 4

On Receiving Scientific Contribution Award of the Heat Transfer Society of Japan
Yukihiko MATSUMURA, Shuhei INOUE (Hiroshima University),
Haruhito KUBOTA (The Chugoku Electric Power Co., Inc.),
Takashi NOGUCHI (Toyo Koatsu Co., Ltd.),
Yoshifumi KAWAI (Chuden Plant Co., Ltd.), Takahito INOUE (Fukken Co., Ltd.) ... 5

On Receiving Technical Achievement Award of the Heat Transfer Society of Japan
Kousuke FUJIWARA, Masayuki MIZUNO (IHI Corporation) 6

On Receiving Young Researcher Award of the Heat Transfer Society of Japan
Hiroki NAGASHIMA (University of the Ryukyus) 7

Best Presentation Award
Atsuki KOMIYA (Tohoku University) ... 8

>The 52nd National Heat Transfer Symposium of Japan>
Report on the 52nd National Heat Transfer Symposium of Japan
Hiroshi TAKAMATSU, Kosaku KURATA (Kyushu University),
Mamoru OZAWA (Kansai University), Atsuki KOMIYA (Tohoku University),
Yoshihiro SERIZAWA (Nippon Steel & Sumitomo Metal Corporation) 9
<Special Issue: Thermal Measurements by Infrared Thermography>

Performance Characteristics and Calibration of Thermal Imager as a Radiation Thermometry Instrument
Yoshiro YAMADA (National Metrology Institute of Japan, AIST) .. 15

Heat Transfer Measurement and Nondestructive Diagnosis Using Thermography
Terumi INAGAKI (Ibaraki University) .. 21

Microscale IR Thermography: From a Viewpoint of Materials Science
Junko MORIKAWA (Tokyo Institute of Technology) .. 27

Proposal of Simplified Estimation Method of Spatial Resolution of Infrared Thermograph
-To Use in Temperature Measurement of Microscopic Electronic Components-
Koichi HIRASAWA (KOA Corporation) .. 33

Visualization of Environment by the Thermal Imaging
Akira HOYANO (The Open University of Japan) .. 39

Temperature Measurement Using Infrared Thermography and Its Application
to Convective Heat Transfer Measurement
Hajime NAKAMURA (National Defense Academy) .. 47

<Report>

Report on The 1st Lecture “Introduction to Heat Transfer”
Shigenao MARUYAMA (Tohoku University) .. 55

<Museum Tour>

Miike Coal Mines: Omuta Coal Industry and Science Museum
Hideo YOSHIDA (Kyoto University) .. 57

<Calendar> ... 61
<Announcements> .. 63
<Note from the JHTSJ Editorial Board> .. 71
このたび、岡崎会長の後をうけて、第54期を担当いたします。伝統ある日本伝熱学会の発展と活性化に微力ながら尽くしていく所存です。

さて、第53期岡崎会長の総会におけるご挨拶や理事会に提示されました引継ぎ事項には、本学会が直面するあるいは中長期の課題として、国際展開、産学連携・異分野との連携、会員増強と若手会員の定着、財政の健全化などが指摘されています。これらはいずれも第53期における具体策が検討され、一部実施に移され、すでに成果を出しているものもあります。今期はそれら対策をさらに促進することが重要な任務であると考えています。

昨年8月、国際伝熱会議（京都）が1974年（東京）から40年ぶりに日本で開催され、関係各位のご尽力によって大変な成功を収めたのは記憶に新しいと思います。伝熱学会はこのほか国際伝熱フォーラムを主宰し、国際展開に継続的に努めています。しかし、国内において伝熱シンポジウムが非常な活況を呈しているのに対して、国際、特にアジア圏での伝熱研究の中心的存在にはなれていないように感じられ、中国、韓国、そして東南アジア地域まで巻き込んだ国際的枠組み作りが必要であろうと思います。

これまで伝熱学会は産学連携に重点を置き、各種企画や伝熱シンポジウムにおける産学連携セッション、さらには第50期の将来検討委員会の提言に基づいて設置された特定推進研究などの活動をしてきました。また伝熱の基礎講座や燃料電池の講習会などを産学連携や社会貢献に繋がる企画も実施されております。しかしながら会員構成や伝熱シンポジウムでの議論から推察されますが、学会（伝熱研究会）設立当時の状況に比べ、機械工学分野の大学・高専の研究者が圧倒的多数を占め、化学工学分野、環境分野など伝熱に深く関係のある分野からの会員、並びに様々な研究課題の源泉でもある産業界、企業の技術者・研究者、学生会員など含めて1300余人の学会で、参加者が会員・非会員も含めて830人（2015年実績）を超えるという例のない伝熱シンポジウムでは、私見ですが、基礎的・要素の研究の発表が相対的に多く、それら要素をインテグレートしたシステムについての発表が少なくなってしまいことも関係していると思います。企業からの発表を促進し、企業技術者・研究者と大学などの研究者、それに若手の研究者との活発な討論、交流を図るための具体策が、今、必要ではないでしょうか。そのことは社会や産業界全体から見て、熱に関わる技術・学問体系の中心的存在として、また大学などの研究者と企業技術者、他分野の研究者、技術者との積極的な、また幅の広い人的交流の場として伝熱学会を機能させることに繋がるでしょう。一方、伝熱シンポジウムでの議論の実質化が必要であると思っています。

なお、こうした数々の活動を支える財政の健全化につきましては、会費の改訂、賛助会員、特別賛助会員の増強によってかなりの改善がなされましたが、それに見合う会員としてのメリットを明確化することが求められています。

以上、伝熱学会の課題を中心に述べましたが、これらの解決には、伝熱シンポジウムに見る高いポテンシャルを、学会の発展と実質的な活性化に如何に生かすかが重要であると認識しています。経験豊かな副会長、理事、協議員、事務局のご協力は勿論ですが、会員各位の積極的なご協力が不可欠です。どうぞよろしくお願いいたします。
新旧会長挨拶

第53期を振り返って

The 53rd Term in Retrospect

岡崎 健（東京工業大学）

Ken OKAZAKI (Tokyo Institute of Technology)

昨年の日本伝熱学会総会にて、宇髙前会長の後を受け第53期会長を拝命してから、早いもので1年が過ぎました。日本伝熱学会は2011年の創立50周年記念式典を契機に、創立から50年間の華々しい発展を振り返るとともに、次の50年に向けて新しいスタートを切りました。当時の第50期笠木会長提案による将来検討委員会の答申に則り、第51期（門出会長）、第52期（宇高会長）では、その実行に尽力されました。第53期では、このような新しい改革を具体的に発展させるべく、①財政基盤の強化、②国際展開、③産学連携・異分野連携と社会貢献、④賛助会員増強と若手会員の活性化について、中長期検討委員会（藤岡委員長）に重点を置いて進めていくことを公約しました。

①財政基盤の強化については、第52期で決定された会費の値上げを平成27年度から実施しました。会費を値上げするからには、会員へのサービスを向上させてはなりません。まず実行に移したのは、「伝熱工学の基礎」講習会です。毎年開講を基本とし、熱プロセスの基礎を分かりやすく講義しようというもので、幸い、平成27年2月27日の第1回講習会では満席となったことから、第2回を7月10日に開催することにしました。経常的な財政基盤の確保も大きく寄与することが期待されています。テキスト作成から講義まで、自ら献身的に行っていただいた企画担当副会長の圓山先生に深く感謝申し上げます。

もう1つ第53期で特筆すべきことは、1993年から法人化を経て現在に至るまで、22年の長きに渡って事務局で日本伝熱学会の発展を支えて来た倉水裕子さんが退職されたことです。多大な貢献に対して深く感謝申し上げます。倉水さんの後任には、村松佳子さんが着任しています。

最后に、この1年間、多大なご支援をいただいた佐藤協、園山重直、黒坂俊雄の三位会長をはじめ、理事各位、協議員各位、各種委員会委員長・委員各位、そして大澤毅士事務局長はじめ事務局の方々に心から御礼申し上げ、会長退任の挨拶とさせていただきます。有難うございました。
平成 26 年度日本伝熱学会賞選考の報告
On selection of Award of the Heat Transfer Society of Japan, 2014

表彰選考委員会委員長
円山 重直（東北大学）
Shigenao MARUYAMA(Tohoku University)
e-mail: maruyama@ifs.tohoku.ac.jp

平成 26 年度日本伝熱学会賞学術賞, 技術賞, 奨励賞および貢献賞について公募を行い, 所定の手続きにより慎重に審査した結果, 各賞の授賞対象者を下記のように決定した（授賞対象の記載は順不同). 表彰式は, 平成 27 年 6 月 4 日に福岡市（福岡国際会議場）で開催された学会総会において行われた.

1. 学術賞
Scientific Contribution Award of the Heat Transfer Society of Japan

1) 代表研究者：村上 陽一（東京工業大学）
共同研究者：河合 明雄（東京工業大学）
「イオン液体を分子間スピン三重項エネルギーミントの媒体に用いた革新的な光アップコンバージョンの先駆的研究」
第 51 回日本伝熱シンポジウム講演論文集, D213, 2014 年
The Journal of Physical Chemistry B, 第 118 巻, 第 49 号, 14442-14451 頁, 2014 年

2) 代表研究者：松村 幸彦（広島大学）
共同研究者：井上 修平（広島大学）
久保田 晴仁（中国電力株式会社）
野口 琢史（株式会社東洋高圧）
川井 良文（中電プラント株式会社）
「バイオマスの超臨界水ガス化に関する熱工学・反応工学的研究」
第 50 回日本伝熱シンポジウム講演論文集, B213 項, 2013 年

2. 技術賞
Technical Achievement Award of the Heat Transfer Society of Japan

1) 代表研究者：藤原 浩介（株式会社 IHI）
共同研究者：水野 昌幸（株式会社 IHI）
「リークを伴う管群の熱流動特性に関する研究」

3. 奨励賞
Young Researcher Award of the Heat Transfer Society of Japan

1) 研究者：永島 浩樹（東北大学）
「水素の量子効果が熱・輸送物性に与える影響に関する研究」
第 50 回日本伝熱シンポジウム講演論文集, 第 II+III 巻, 304-305 頁, 2013 年

4. 文部科学大臣表彰の受賞

平成 27 年度科学研究分野の文部科学大臣表彰については, 本学会から推薦した受賞者はいなかった.

5. 謝辞

日本伝熱学会賞ならびに文部科学大臣表彰の選考には, 本会第 53 期表彰選考委員会幹事と委員の皆様の多大な協力があった. また, これらの賞の募集に対して本会会員の多くの方々の推薦があった. この場をお借りして, 賞の推薦ならびに選考に携わった方々に深く御礼申し上げる.
先日開催された第52回日本伝熱シンポジウムにおきまして、日本伝熱学会学術賞を頂きました。本賞にご推薦下さった先生、ご審査下さった先生方と、伝熱学会運営の先生方および事務局の皆様に心より感謝申し上げます。非力であるにも関わらず、本受賞に関する成果を得ることができましたのは、幸運にも周囲に頭脳明晰な先生方に恵まれ、このような先生方から研究の要所において様々な示唆・議論・助言を頂くことができたためであります。特に重要な示唆と議論を頂きました東京工業大学の佐藤勲先生と彌田智一先生には厚く御礼申し上げます。本受賞を貴重な激励と受け止め、世の中と伝熱分野の発展に貢献できるよう一層研究に励む所存です。

受賞対象の研究は、光の変換、特に「入射光をより波長の短い光に変換するアップ・コンバージョン（UC）」に関します。UCが高効率に行えると、太陽電池や水分解光触媒などの光エネルギー変換系において、従来未利用で不可逆なエネルギー損失となっている「各変換系の閾値波長より長波長な光のエネルギー」を二次エネルギー（電力・水素等）生成に寄与させることが可能となり、太陽光エネルギーの利用効率の向上につながります。

光子が物質に吸収されて生じる物質の励起状態は、熱的なエネルギー分布をもつ物質構成粒子群と非平衡なため、熱的分布への緩和を急ぎます。UCは、複数の低エネルギーの光子が物質に吸収され、そこで複数の励起状態が生じた後、これらが熱的分布に緩和する前に、空間的な輸送とエネルギーの合算を完了し、より高いエネルギーの（より少数の）励起状態に機能することを要します。

本研究のUC法は、「物質」には有機分子（多環芳香族分子、以下「分子」）を用い、その「輸送」は分子の流体中における熱的運動（並進拡散）によって行われます。分子間では、衝突（距離1nm程度以下の近接）を必要条件としてエネルギー移動が起こり、特に励起状態の二分子が衝突した場合は、ある確率φで上述の「エネルギーの合算」、具体的には三重項・三重項消減（TTA）と呼ばれる過程が起こり、これが短波長光の放射に帰結します。

本受賞に関する一連の研究は、このための流体にイオン液体（イオンのみからなる常温融溶塩）を用いる着想を得、その研究を開始するところから始まりました。開発した試料のUC量子効率（φUC）測定から、φUCがイオン液体の種類に大きく依存することが見出され、可能なイオン液体の数は事実上無限であるため、φUCの向上を追求するにあたっては、「どの要因がφUCを支配しているのか」に関する理解が必要です。この動機により、イオン液体中における分子の並進拡散、および、電子スピン状態に主に依存する分子間エネルギー移動過程とTTA過程について、一連の研究を行い、φUCのイオン液体依存性の主原因が上述の「確率φ」のイオン液体依存性にある事を突き止めました。この知見を基にさらに研究を進めたところ、φがイオン液体の粘度に強く正に相関するという意外な事実を発見しました。この事実は、(i)励起二分子合成体のスピン多重度（1 or 3 or 5）間の項間交差が発生していること、および、(ii)その項間交差の発生条件が、粘度に支配される分子ダイナミクスを定量していること、を示すものです。そのメカニズムの説明において指摘した具体的な分子ダイナミクスは仮説の段階であり、今後、その検証研究を通じ、より一般的な試料設計指針の獲得を目指しています。

当領域はここ数年立ち上がりを見せていますが、従来は主に物理化学者により研究されてきました。本研究は、光エネルギー制御を行い熱工学と捉え、現象を根底で支配する流体中の拡散や分子ダイナミクスなどの輸送現象、動的現象に対し、分子スケールの熱学・伝熱学の観点からその解明と改善に取り組むものとなっています。
このたび、福岡において開催された伝熱学会総会にて日本伝熱学会賞学術賞を会長より授与されました。関係の皆様に感謝いたしますとともに、大変光栄なことと感じています。今回の受賞の対象となった「バイオマスの超臨界水ガス化に関する熱工学・反応工学的研究」は、10年近く前から継続的に広島大学、中国電力、東洋高圧が中心になって進めてきた研究です。

代表的なバイオマスには木質系や草本系のものがありますが、これら比較的燃焼が容易な乾燥系バイオマスに対して下水汚泥や焼酎残渣、鶏糞などの、含水率が高く、そのままでは直接燃焼できない含水系バイオマスもあります。従来は、これらの含水系バイオマスにはメタン発酵技術を適用するのが一般的でしたが、反応速度が遅く、2週間から1ヶ月の反応時間がかかるとともに、完全に発酵が進められず、多くの残渣と排水の処理が問題となっていました。これに対して、高温高圧の水である超臨界水中においてバイオマスを熱化学的にガス化する超臨界水ガス化技術の開発が有効であると考えました。超臨界水は反応性に富み、有機物を迅速に分解して水素、メタン、二酸化炭素を主成分とする可燃性のガスに変換することが可能です。しかも、その反応時間は数分とメタン発酵より数桁低く、熱化学的な反応のためにほぼ完全にガス化を実現することができます。

しかしながら、その実用化にはいくつかの問題がありました。1つは、超臨界水中における反応工学の問題で、バイオマスの均一相分解反応速度、触媒反応速度、生成ガス組成、反応熱、無機物の挙動などの確認は、装置設計上必要不可欠にもかかわらず、推算手法の実験的な確認はされていませんでした。2つめは熱工学的な問題で、原料を連続的に供給して加熱する場合の温度変化、反応器からの熱損失、反応器の加熱速度、熱交換器効率など、プロセスの性能を実質的に決定する熱工学に関する知見も十分に得られていました。3つめは実証運転で、バイロットプラントスケールでの運転実績によって実用化にあたっての問題点を洗い出し、より精度の高いプロセス設計を行う必要がありました。4つめはチャーチ生産抑制で、ガス化反応の副反応であるチャー生成による装置閉塞とガス化率の低下を改善する必要がありました。

これらの問題に、化学工学ならびに熱工学の観点から順次検討を加えて反応速度式の決定と各種原料に対する反応速度パラメータの確認、熱力学的なガス組成ならびに無機物の挙動の確認、バイロットプラントの建設と運転ならびにその伝熱計算、高温高圧におけるバイオマススラリーの流動・伝熱特性の決定、モデル化合物を用いたチャー生成抑制の簡略設計法の開発にあたっての問題点を洗い出し、より精度の高いプロセス設計を行うことを目標に、いくつかの学術的な知見を確立することができました。

この研究の推進は、以前の共同研究メンバーである産業技術総合研究所、広島市の協力なくしてはできませんでした。また、新エネルギー・産業技術総合開発機構、日本学術振興会ならびに科学研究費助成金の助成によって実証運転が行われました。その結果として、超臨界水ガス化装置についての基礎的な設計指針をとめるとともに、いくつかの学術的な知見を発展することことができました。

現在は、得られたチャー生成抑制の提案と実証を進めており、実用化を視野に入れた研究を進めています。チャー生成機構が1つではないことが確認されたことから、問題解決に向けたヒントが得られ、これを実証的に確認しているところです。反応工学・熱工学・プロセス工学を基盤に、実際に社会実装につながる技術開発を目指しています。今後とも、皆様のご指導、ご鞭撻をいただきたいと思います。
伝熱学会賞を受賞して
On Receiving Technical Achievement Award of the Heat Transfer Society of Japan

藤原 浩介, 水野 昌幸 (IHI)
Kousuke FUJIWARA, Masayuki MIZUNO (IHI Corporation)
e-mail: kousuke_fujiwara@ihi.co.jp

このたび福岡国際会議場で開催されました日本伝熱学会総会において、平成26年度日本伝熱学会技術賞をいただきました。ご推薦、ご選考いただきました諸先生方、ならびに日本伝熱学会の皆さまに心より御礼申し上げます。

さて、今回受賞いたしましたのは、「リークを伴う管群の熱流動特性に関する研究」です。ご存知の通り、管群の熱流動問題を取り扱った研究事例はこれまでにも数多くあり、世間的には研究され尽くした感がありました。その中で、私どもが古典的にもいえるこのような課題に取り組むことになりましたが、多数の伝熱管を均一に冷却（加熱）するという観点において、熱交換器よりも要求の厳しい反応器の開発に取り組んだことがきっかけでした。管群直接交流による熱伝達と、管とバッフル孔が形成する環状すきまからの適度なリークをうまくバランスさせる必要があるわけですが、直径数m規模の容器に、数万本の反応管と複数枚のバッフルで構成される大型反応器では、バッフル1枚あたりの積分リーク量が全流量の50%を超えることは珍しくありません。

実験では、圧力をかけすぎてアクリル供試体が破損したり、環状すきまからのリークだけを計測したいのに、ほかの予期せぬところからのリークがあり、また通りの苦労も経験しました。管偏心をどう考えるかということも問題でした。すきまが小さくなると、偏心距離が同じでも偏心率としては増加します。この場合、リーク抵抗が小さくなることはあきらめていましたが、すべての管群が一斉に同じ偏心率を持つわけではないので、ある程度の分布を持つものと見なして評価しました。

また、リーク（分岐）によって圧力を失う側の管群直交流の圧力損失特性が、有名なZukauskasの実験式に近似できるのに対して、リーク（合流）によって動圧を獲得する側の管群直交流ではZukauskasの式より減少するという結果が得られました。分岐側も合流側も圧の平均速度としては同じでも、円管表面での到達速度は合流側の方が遅いために圧力抵抗が小さくなるという理由です。数値解析でも流れ場を調べてみいたら、合流に伴う円柱後流の速度回復が後流領域を狭小化させることもあり、静圧に関し一定の制限効果があったのではないかと考えています。

末尾ながら、本研究をご支援いただいたIHI原子力セクター機器設計部の皆様には深く感謝を申し上げます。また本研究は、古くは1950年代より蓄積されてきた膨大な知見の数々に大きく支えられました。古い研究には産業利用を見据えた体系化への執念ともいえるべきものを感じます。私どもも先駆の胸を大いに借りて、従来知見ではカバーしきれない領域にこつこつと手を当てていくだけかも知れませんが、産業界には、このような“古くて新しい”問題が少なくなく存在しており、発掘される日を待っていると思います。そこに光をあてて、地道に研究を積み重ねていくことで、伝熱工学の発展に多少なりとも貢献することができれば望外の喜びです。（水野記）
福岡国際会議場にて開催された日本伝熱学会第53期総会にて,栄えある日本伝熱学会奨励賞を賜りましたこと,大変光栄に存じます.御推薦,御選考下されました先生方ならびに関係者の方々,これまで伝熱シンポジウム等の学会の場を通じて議論されていた皆様のおかげだと存じます.この場をお借りして深く感謝の意を表します.

受賞対象となりました,「水素の量子効果が熱・輸送物性に与える影響に関する研究」は私が東北大学大学院在学時に,徳増崇准教授のもとで行った研究であり,水素分子の量子効果がその熱・輸送物性に与える影響とその発現メカニズムを経路積分法に基づいた分子動力学（MD）法を用いて解析したものです.

現在水素は,工学的に極めて重要な燃料であり,近年ではクリーンエネルギとして注目を浴びています.この水素を効率よく使用・貯蔵・輸送するためには,その熱流動特性を詳細に把握する必要があります.通常,熱流動現象は,実験により得られた物性値を用いて予測することが可能でありますが,代表長さがナノメートルのオーダーになるとナノスケール特有の流動特性が発現し,実験によりその熱流動現象を把握することが困難になると考えられます.水素のこのような流れは,水素貯蔵合金中の水素分子の拡散現象や,燃料電池における触媒表面での解離反応を伴う流れにみられます.このように,ナノスケールにおける水素の熱流動特性の理解は水素利用において不可避であるといえ,水素を安全かつ効率よく使用するためには,水素のナノスケールの熱流動現象を詳細に理解する必要があリます.

ナノスケールの熱流動解析には,MD法が有効でありますが,水素を対象とした場合,分子量が小さいことにより,原子核の不確定性,つまり波動性が大きく,分子の運動を古典力学のみで取り扱うことが難しくなり,古典的手法の範疇で水素の熱流動特性を再現することが困難となります.本研究では,この水素分子の量子効果を経路積分セントロイド分子動力学（CMD）法により表現し,水素の熱・輸送物性評価を行いました.

具体的には,この手法を用いて幅広い温度-密度領域の水素の熱物性を求め,状態方程式を作成して評価を行いました.さらに輸送物性として水素の拡散性とエネルギー輸送物性の温度依存性についても評価を行いました.これらの結果を従来の古典MD法の結果と比較することで,水素の熱・輸送物性に対する量子効果の影響を明らかにし,その発現メカニズムを解明しました.これらの解析により,水素の熱・輸送物性が対応状態原理に従わない要因が明確となり,さらにその発現メカニズムを世界で初めて解明しました.この量子効果を考慮することで,水素の熱・輸送物性の実験値を再現できることが分子論的に証明されたことは学術的に非常に重要であり,これらの知見は,マクロスケールの理論が適用できない水素のナノスケールの熱流動現象の解明に大きく貢献するものであり,水素の安全な貯蔵・輸送に効率的な使用,さらに水素を効率的に取り扱う材料,ナノデバイスの理論設計というブレークスルーを实现することができ,今後の水素社会で生じる問題解決への影響は計り知れないと考えられます.

今年四月より,琉球大学工学部機械システム工学科の助教に着任し,ナノスケールの熱流動現象の解析を継続しておられます.今後も微力ながら伝熱工学の発展ならびにナノ・マイクロスケールにおける物質輸送や伝熱機能の応用に貢献できるよう邁進し,若輩者ではございますが,後進の育成にも取り組んでいきたいと思っております.これからもご指導・ご鞭撻の程,よろしくお願い申し上げます.
平成27年6月4日に福岡市（福岡国際会議場）で開催されました学会総会において、第52回日本伝熱シンポジウム（福岡）優秀プレゼンテーション賞セッションにて発表を行い、見事優秀プレゼンテーション賞を受賞された方々の表彰式が行われました。ショートプレゼンテーションおよびポスターセッションの他に、今回よりアピールスライドを導入してのセッションとなり、多くの発表技術が問われることとなりました。参加された学生の皆様は独自の工夫を凝らし、セッションに臨まれました。受賞者および優秀プレゼンテーション賞セッションと表彰式の様子をご紹介させていただきます。

2015年度 受賞者

◆ 宮本 駿　（慶應義塾大学）
「パルスレーザー粘度計を用いた血液凝固過程センシングに関する研究」

◆ 岡部 孝裕　（東北大学）
「高精度温度プローブによる皮膚がんの早期発見手法の検討」

◆ 相田 拓也　（東京理科大学）
「蛍光異方性を用いた流体温度場イメージング法の開発」

◆ 深田 一路　（慶應義塾大学）
「新たな干涉励起方法を用いた高感度光MEMS拡散センサーの開発」

◆ 丸岡 成　（横浜国立大学）
「ハニカム多孔体を用いた飽和プール沸騰限界熱流束向上に与える毛管力による液供給効果」

◆ 本多 拓哉　（東京大学）
「シリコン表面におけるサブミクロンスケールの水滴成長の解析」

◆ 國安 政孝　（東京理科大学）
「二台カメラを有する DHPTV 法による水中におけるペブル充填された円管内流れの三次元可視化」

（順不同）
第52回日本伝熱シンポジウムの報告
Report on the 52nd National Heat Transfer Symposium of Japan

高松 洋 (九州大学), 蔵田 耕作 (九州大学)
小澤 守 (関西大学), 小宮 敦樹 (東北大学), 芹澤 良洋 (新日鐵住金)

Hiroshi TAKAMATSU, Kosaku KURATA (Kyushu University)
Mamoru OZAWA (Kansai University), Atsuki KOMIYA (Tohoku University)
Yoshihiro SERIZAWA (Nippon Steel & Sumitomo Metal Corporation)

1. シンポジウム概要
第52回日本伝熱シンポジウムが、平成27年6月3日（水）から6月5日（金）にかけて、福岡市（会場：福岡国際会議場およびホテル日航福岡、図1参照）で開催されました。九州地区での開催は今回で7回目となりますが、福岡で開催されるのは平成3年以来、実に24年ぶりです。本シンポジウムの開催にあたっては、日本学術会議による後援のほか、22学会協会の共催・協賛、福岡観光コンベンションビューローによる協力を受けることができました。

図1 福岡国際会議場の外観と看板

今回の会場は、福岡空港やJR博多駅から近い福岡国際会議場といたしました。初日の午前中と最終日はあいにくの雨でしたが、ガラス張りのロビーからは博多湾の開放感ある景色を望めました。会場近隣には手軽にランチを楽しんでいただける場所が少なかったのですが、福岡が誇る歓楽街・中洲にほど近いため、シンポジウム後に場所を移して親交を深めるには便利だったのではないかと思います。

シンポジウムには388件の講演論文が寄せられ、参加者の総数は事前・当日登録を合わせて839名となりました。いずれもここ数年のシンポジウムの数字を上回る盛況ぶりとなりました。今回から会員事前登録以外の参加費が1,000〜2,000円値上げされた中、このように大勢の方々にご参加いただいただけましたことに対し、改めてお礼申し上げます。

初日の午後には、企画部会学生会委員会および産学交流委員会の先生方のご協力のもと、恒例の優秀プレゼンテーション賞セッション、引き続き産学合同交流会が行われました。十分に余裕のある部屋を準備したつもりでしたが、予想を上回る大盛況となり、参加者の皆様には窮屈な思いをさせてしまいました。また、今回のシンポジウムでは、これらに並行して特定推進研究特別セッションを開催いたしました。基調講演および特定推進研究の5課題について報告と議論が行われました。

2日目の午後は、九州旅客鉄道株式会社の代表取締役社長 青柳俊彦氏による特別講演「ななつ星が九州を変える」が開催されました（図2）。話題のクルーズトレイン「ななつ星in九州」の様子がムービーや写真で紹介されたほか、今夏にデビューする「或列車」の誕生話などが披露されました。

図2 青柳俊彦氏（JR九州 代表取締役社長）による特別講演

特別講演・総会の後、会場をホテル日航福岡に移して恒例の懇親会が開催され、344名の方々にご参加いただきました。例年ない試みとして、
参加者の皆様にご協力いただき、集合写真を撮影してからの開宴となりました（図3）。洋食・中華ビュッフェ320名分、寿司盛り20種類、博多ラーメン、もつ鍋、明太子・辛子高菜ご飯をそれぞれ200食準備いたしました。また、九州開発の各種焼酎19種類が飲み放題だったほか、実行委員会で選りすぐった日本酒を6種11本揃えました。博多の味をお楽しみいただけたのではないかと思います。

例年と同様、今回のシンポジウムでも多くの企業から機器展示（13社）、広告（14社）、協賛（1社）のお申し込みをいただきました。ご協力いただきました企業の皆様には心からお礼申し上げます。

以上、本シンポジウムの概要を簡単にまとめました。シンポジウムの運営状況や各行事の様子につきましては、担当者による以下の記事をご覧下さい。

（実行委員長 高松洋、幹事 蔵田耕作）

2. ホームページ・参加登録
本シンポジウムに関する情報は、学会誌の会告とホームページ（http://htsj-conf.org/symp2015/）上で公開しました。ホームページのデザインと運用は、桃木悟委員および山口朝彦委員（長崎大学）にお願いしました。

今回のシンポジウムでは、講演申し込み、講演論文投稿、参加登録をホームページから受け付けるのはもちろん、その後、印刷用プログラムを整形したり、講演論文集CD-ROM版やウェブ版を自動で生成したりすることができる新システムを構築いたしました。このシステムには両委員がこれまで培ったノウハウが凝縮されており、日本伝熱学会が今後開催するシンポジウムや各種国際会議でも長く使われていただけるような仕様になっています。

（蔵田耕作）

3. プログラム
今回のシンポジウムの発表件数の総数は388件で、第51回の浜松（384件）や第50回の仙台（351件）を上回りました。特に今回はオーガナイズド・セッション（「燃焼研究の最前線」、「熱エネルギー材料・システムのための熱・物質輸送促進」、「水素・燃料電池・二次電池」、「非線形熱流体現象と伝熱」、「ナノスケール伝熱機能発現とその応用への展望」の5セッション合計113件）と優秀プレゼンテーション賞セッション（54件）への講演が多く寄せられました。ご尽力いただきましたオーガナイザーおよび学生会委員会の皆様に感謝申し上げます。

講演者の皆様には申し込み時に希望セッションにご協力いただき、集合写真を撮影してからの開宴となりました（図3）。

図3 懇親会集合写真
とキーワードを選んでいただき，それを尊重しながらプログラム編成をいたしました．発表件数が多いため，初日から最終日の前日まで，10 室で講演が並行するプログラムとなりました．プログラム編成と座長の選出に関しては，鶴田隆治委員をはじめとする九州工業大学の委員にご尽力をいただきました．最後に，ご多用中のところ座長を快くお引き受け下さった皆様に厚くお礼申し上げます．（蔵田耕作）

4. 講演論文集 CD-ROM 版・プログラム冊子
学会理事会の決定により，昨年より冊子体の講演論文集を発行しないことになりましたので，CD-ROM 版およびプログラム冊子のみを作成いたしました．表紙には黒田勘兵衛の合子形兜に福岡タワーをあしらったデザインを採用しました．ほとんどの参加者のノートパソコンは CD ドライブ非搭載であることから，会場でCD-ROMの内容を閲覧することができないというご不満が寄せられることを心配しておりました．しかし，ご利用はごくわずかに過ぎませんでした．これは，シンポジウムの1週間前から会員向けに講演論文集ウェブ版を公開していたこと，会場ロビーでフリー Wi-Fi を利用できたこと，講演論文集ウェブ版がスマートフォンによる閲覧に対応していたことなどによると思われます．（蔵田耕作）

5. 会場・受付
福岡国際会議場の 4, 5 階を 3 日間借り切って開催いたしました（図4）．メインフロアを 5 階と考えて受付，機器展示，休憩スペースのほか，A〜C 室の 3 講演室を配置し，4 階に D〜J 室の 7 講演室を設けました．また，付帯会議用に 3 つの会議室を確保いたしました．シンポジウム 2 日目の特別講演と総会には，3 階のメインホールを借りて使用しました．すべてを福岡国際会議場の 3〜5 階で済ませることができましたので，コンパクトにまとまって移動に便利だったのではないかと思いま
す．初日の第 1 セッション開始前に多くの方がご来場されることから，ウェブを通じて事前登録していただいた参加者の皆様に関しては，コンプレックスバック引換券，CD-ROM 引換券，領収書をセットにした名札を 50 音順に並べてお迎えし，最大 10 窓口で引き換えを行いました．また，ウェブ登録して未送金だった方のお支払い窓口を 2 つ，当日登録窓口を最大 4 つ開設して対応いたしました．誘導のためにベルパートナーを置きましたが蛇の列をなすことはなく，スムーズに初日の受付作業を終えることができました．会場レイアウトの設計と設備には濱本芳徳委員をはじめとする九州大学および福岡大学の委員にご尽力をお願いしました．（蔵田耕作）

図 4 福岡国際会議場 5 階ロビーの様子

6. 機器展示・広告
従来のシンポジウムと同様に，機器展示・プログラム冊子広告掲載に多くの企業からお申し込みをいただきました．なお，今回から新たにプログラム冊子の表裏紙見返し，裏表紙見返しにも広告募集を行いました．以下に，ご協力企業を紹介させていただきます．（敬称略・順不同）
【機器展示】
・メンター・グラフィックス・ジャパン株式会社
・西華デジタルイメージ株式会社
・日本カノマックス株式会社
・株式会社菱化システム
・株式会社ノビテック
・株式会社ナックイメージングテクノロジー
・マイクロトラック・ベル株式会社
・株式会社ソフトウェアクレイドル
・日本スウェージェロック FST 株式会社
・ニイガタ株式会社

伝熱 2015 年 7 月 - 11 - J. HTSJ, Vol. 54, No. 228
機器展示は会場の 5 階ロビーで行っていただきました。最も広いA 室と休憩スペースに挟まれていることに加え、受付に近い場所だったことが功を奏して、初日には多くの来訪があったようです。しかし、2日目以降は7講演室が集まる4階に人の流れが移ったようだとの声が聞かれました。機器展示や広告の取りまとめおよび設営手配は、伊藤衡平委員、新里寛英委員を中心に九州大学の委員にご尽力を頂きました。(藏田耕作)

7. 日本伝熱学会特定推進研究特別セッション
「エネルギー・環境戦略と特定推進研究による伝熱研究の展開」
2014年4月に新たなエネルギー基本計画が閣議決定され、徹底化戦略のエネルギーの推進、再生可能エネルギーの導入加速、火力発電の効率向上、分散型エネルギーシステムの普及拡大、非再生型資源の開拓などの政策提示によって、我が国のエネルギー安全保障に資するエネルギー系統化と同時に環境との調和を図ることが求められています。日本伝熱学会はエネルギーや関連する基幹学会であり、エネルギーの高効率利用、省エネルギーは勿論のこと熱科学・熱技術の新たな展開にも責任を負うべき立場にあると思います。そのような観点から特定推進研究企画委員会は本学会独自の特定推進研究課題を選定し、研究を推進しています。企画委員会は現在までに7件の課題を選定し、うち2件についてはすでに研究成果の概要を本委員会のホームページに掲載しております。

本特別セッションにおいては、現在進行中の5課題について各研究グループの代表者から研究内容の概要や進行状況などについてご紹介いただき、参加の皆様とともに伝熱研究の将来像などについて意見交換を行いました。提供された話題と講演者は以下の通りです（敬称略）。

基調講演
・「スマートグリッド・スマートシティの本質と課題」
 毛利 邦彦（eL-Power Technology）
特定推進研究課題中間報告
・「ナノスケール伝熱機能発現とその応用への展望」
 塩見 淳一郎（東京大学）
・「次世代鉄鋼材料製造技術の研究」
 門出 政則（九州大学）
・「将来世代コンピュータのための超長マイクロチャンネル冷却」
 中山 恒（名誉会員）
・「伝熱工学が作る医療機器の新展開」
 谷下 一夫（早稲田大学）
・「気候モデルにおける諸過程のモデル化の妥当性・精度に関する検討」
 吉田 英生（京都大学）

各講演者から大変熱のこもった、また貴重な話題が語られ、非常に有意義な会合になったと思います。本セッションには多数の方々にご参加いただき、用意しました配布資料200部がごく少数を残してほとんど出払う状況になりました。本特別セッションを企画いたしました特定推進研究企画委員会といたしまして、ご参加いただきました皆様に心より感謝申し上げます。

なお、本特別セッションにおきまして配布いたしました資料につきましては本会ホームページに掲載しておりますので、当日、ご参加いただけない
かった方々にも是非一度ご覧いただければ幸いであります。
(特定推進研究企画委員会 小澤守)

8. 優秀プレゼンテーション賞セッション
本セッションは、本学会の学生会員や若手研究者会員の研究を広く紹介し、研究意欲を高めるとともに発表技術を磨き上げる場として、毎年シンポジウムの初日に学生会委員会が企画・運営しているものです。今回の講演申込みは 54 件であり、最終的には 51 件の発表がありました。ここ数年の申込件数は 30〜40 件で推移しているのですが、今回は想定以上の申し込みがあり、本セッション開催の意義が広く評価され、さらなる盛り上がりを期待できると考えております。

シンポジウム初日に 4 室併催でショートプレゼンテーション（各講演 3 分）を行い、それに続いてポスターセッションを 1 会場で 80 分間行いました。また、今回から多くのシンポジウム参加者に優秀プレゼンテーション賞セッションに来ていたよう、「アピールスライド」を導入しました。これは、各発表の内容を 1 枚のスライドに纏め、それを会場のあちこちで広告的に流すものであります。今回は A〜H 室の 10 室と受付近辺の 11 箇所で初日に流しました。ショートプレゼンテーションおよびポスターセッションともに多くの参加者に足を運んでいただき、大盛況で終えることができました（図 5）。

ショートプレゼンテーションについては、いずれの発表もレベルが高く、審査員も甲乙つけ難いとの感想を漏らしていました。また、ポスターセッションは、80 分間を通して多くの方に参加いただき、ほとんどどのポスターの前で、活発な議論がなされていました。発表者も参加者も納得のいくまで深い議論ができたのではないかと思います。

審査は各部屋 5 名の審査員で行い、またポスターセッションにおける投票と併せて学生会委員会にて慎重かつ厳正に検討した結果、宮本駿（慶應義塾大学）、岡部孝裕（東北大学）、相田拓也（東京理科大学）、深田一路（慶應義塾大学）、丸岡成（横浜国立大学）、本多拓哉（東京大学）、國安政孝（東京理科大学）、敬称略（講演番号順）の 7 名が優秀プレゼンテーション賞を受賞しました。惜しくも受賞に至らなかった発表者におかれても、非常にレベルの高い発表ばかりであったとの感想をいただいております。

末筆ながら、限られた時間内で多くの審査項目を懇篤ご丁寧に行っていた審査員の皆様、また多大なご協力をいただいたシンポジウム実行委員会、この場を借りて篤く御礼申し上げます。
(学生会委員会 小宮敦樹)

図 5 ポスターセッション

9. 産学合同交流会
産学交流会は、伝熱シンポジウムの初日午後に、学生ポスターセッション会場に隣接して実施しました。本交流会は、産学の交流活性化を目的とし、学生と企業、教員と企業の交流・コネクションづくりを目指し、学生会委員会の協力の下、産学交流委員会が企画したもので、学生会委員会主催の優秀プレゼンテーション賞セッションに続いて、11 社が参加した企業ポスター展示と交流会を実施しました。今回は就職活動時期とも重なったためか、例年とは異なる業種の企業の参加もあり、伝熱工学の領域の広さを改めて認識いたしました。

例年より開催時間がやや遅くなり、参加者の減少が心配されましたが 70 名の参加者が集まり、フリードリンクと軽食を手に、各企業ブースにて日本の先進技術を支えている伝熱技術の開発状況、各産業への活用状況を紹介され、活発な議論が行われました。学会などではほとんど発表されることがない企業の実際の研究開発活動が見られるため、参加者の関心は高く、活発な質疑応答がなされ、盛況のうちに終了しました。

閉会後も、今回の交流会で親睦を深めたグループは、反省会を行い、学会初日から大変に盛り上がり
第 52 回日本伝熱シンポジウム

ました。
開催にご尽力頂いた企業出展者の皆様、伝熱シンポジウム事務局、理事会・企画部会、学生会委員会の先生方に深く感謝し、報告とさせて頂きます。
ご参加いただいた企業（敬称略）：(株)IHI、(株)WELCON、新日鉄住金 (株)、住友電工 (株)、(株)東芝、日本 AMD (株)、(株)日立製作所、(株)フジクラ、フューチャーファシリティーズ (株)、ブラザー工業 (株)、メンターグラフィックスジャパン (社)。
（産学交流委員会 芹澤良洋、堀内敬介、工藤正樹、河野正道）

図 6 産学合同交流会

10. あとがき
今回、伝熱シンポジウムを福岡で開催するにあたり、九州らしい「おもてなし」で皆様をお迎えしたいという思いで準備を進めて参りました。多くのご講演と参加登録をいただき、数字の上ではシンポジウムを成功裡に終えることができましたと言えますが、その実感が湧きません。会期中の慌ただしさのため、お世話になった全国各地の皆様にご挨拶できず、お声を聞けないまま 3 日間が過ぎてしまいました。参加者の皆様にとって満足度の高いシンポジウムでありましたならば幸いです。
本シンポジウムでは、高松洋実行委員長のリーダーシップのもと、非常にパワフルな実行委員メンバーにご参加いただきました。また、九州大学の学生諸君には、朝早くから準備・運営に協力をいただきました。さらに、理事会や企画部会の皆様、第 51 回浜松および第 50 回仙台の両幹事、各種委員会の先生方には多くのご指導とご助言を賜りました。シンポジウムを支えて下さった皆様に心から感謝いたします。
今回のシンポジウムで得られたノウハウを整理し、次回シンポジウム開催地の関西地区的実行委員会の皆様へ繋げたいと思います。
（蔵田耕作）
1. はじめに
赤外線サーモグラフィ装置（熱画像装置）は検出素子の製作技術の進歩に伴い低価格化が進み急速に普及している。これに伴い、その用途も拡大し、単に赤外線熱画像の撮像装置としてだけではなく、定量的に温度の分布を捉える計測器としてのアプリケーションが増大している。その際、対象表面からの赤外熱放射光を捉える光学センサの素子ごとにプランクの放射則で表される温度と熱放射輝度の関係を適用して温度を求める。このような測定は、放射温度計の非接触測定としての長所、すなわち移動物体が測定可能、熱容量が小さい薄膜や微小物体の測温が可能、高速応答、常温から高温までの広い温度域が測定可能、などの特長を引き継ぎ、さらに画像取得により点測定が2次元分布測定に展開されるという大きなメリットがある。また、捉える赤外線熱放射光強度が温度変化に対して高感度に変化することも放射温度計測の大きな魅力である。
一方、赤外線サーモグラフィによる温度測定には、放射温度測定の持つ様々な課題がそのまま残されていて、多くの場合、スポット測定の範囲より大きな測定誤差要因となっているもので、そのことが見過ごされていることが多い。未知の放射率の影響、背景放射光の映り込みの影響、結像系の視野に応じた影響（面積効果）などがその原因である。そこで、本稿ではこれらの課題について解説するとともに、それらの克服に向けた開発の一例紹介する。さらに、サーモグラフィ装置の温度計としての校正に関し我が国における標準トレーサビリティの現状についても述べる。

2. 赤外線サーモグラフィによる放射温度測定の課題
2.1 測定感度
一般に放射温度測定は捉える熱放射光の温度変化に対する感度が高く、温度域と測定波長によっては放射輝度に対応した光検出器出力（輝度信号の変化）は温度変化1℃あたり1%オーダに達する。黑体からの熱放射の分光放射輝度L_{λ}と熱力学温度Tの関係は下記のプランクの式で記述される[1]。

$$L_{\lambda}(\lambda,T) = \frac{c_1}{\lambda^5} \exp\left(\frac{c_2}{\lambda T}\right) - 1$$

ここで、λは波長、$c_1=1.191 \times 10^{-16}$ W m$^{-2}$ sr$^{-1}$は放射の第一定数、$c_2=1.438 \times 10^{-2}$ m Kは放射の第二定数である。この関係をFig.1に示した。赤外線サーモグラフィ装置では、例えば8〜12 μm帯など、ある決められた波長帯を検出する。温度が上昇するのに伴って分光放射輝度が増加する様子がこのグラフから分かる。放射測温ではこの関係を利用して、特定の波長で検出した光のパワーから温度を求める。線の間隔が狭い長波長側は温度変化に対する分光放射輝度の相対変化が小さく、温度測定に適さないことが分かる。10 μm帯でも高温になると線の間隔が狭く、感度が低下している。このことを定量的に以下に評価する。

図1 黒体からの分光放射輝度分布
感度計算や不確かさ評価には(1)式を \(c_2 >> \lambda T \) の条件の下で近似した下記ウィーンの式が便利である。

\[
L_{b,\lambda}(\lambda, T) = \frac{2c_i}{\lambda^2} \exp\left(\frac{-c_2}{\lambda T}\right)
\]

(2)

この両辺の対数を微分することで放射光輝度の温度変化に対する感度に関する下記関係式が得られる。

\[
\frac{dL_{b,\lambda}}{L_{b,\lambda}} = \frac{c_2}{\lambda T} \frac{dT}{T}
\]

(3)

波長が短く、温度が低いほど同じ \(dT \) に対し大きな相対信号変化 \(dL_{b,\lambda}/L_{b,\lambda} \) が得られることを分かれる。例えば、8 – 12 \(\mu \) m 帯を測定する場合、対象温度1000 \(^\circ\)C の時、\(dT = 1 \, ^\circ\)C の温度変化に対し、輝度信号は \(dL_{b,\lambda}/L_{b,\lambda} = 1\% \) と大きく変化する。しかし、対象温度が1000 \(^\circ\)C になるとこの感度は（\(T^2 \) に比例して）およそ1桁低下する。この事は図1で10 \(\mu \) m 近辺で0 \(^\circ\)C での（単位温度変化あたりの）線の間隔の広さと1000 \(^\circ\)C でのそれとが大きく異なることに対応している。同じ温度では近赤外で通常用いられる 0.9 \(\mu \) m で測定すれば（\(\lambda^2 \) に比例して増加して）1 \(\%/\)C の感度が得られ、格段に高感度である。測定温度域に応じて推奨される測定波長は異なり、特に1000 \(^\circ\)C 以上の高温域で8 – 12 \(\mu \) m 帯で測定することは、高感度という放射温度測定の最大の利点が失われ、ノイズ、放射率誤差、アングのドリフトなど様々な外乱が大きな温度測定誤差要因となるため、避けるべきである。

2.2 未知の放射率と背景放射光の影響

放射温度測定の最大の課題は未知の対象放射率である。上記プランクの式で表されるのは黒体からの熱放射であり、一般の物体からの熱放射輝度 \(\varepsilon L_{b,\lambda} \) から温度を求めるにはその分光放射率 \(\varepsilon \) が分かっていることが求められるが、放射率は対象の物質、表面状態、波長、出射方向、偏光など、様々な状態で変化し、正確に知るのは極めて困難である。

さらに、放射温度測定では測定対象の周囲に高温物体があると、そこからの放射光が対象表面で反射して捉えられ正しい温度測定ができない。赤外線サーモグラフィ装置を室温域あるいはそれより低温の対象の測定に適用すると、室温の壁や天
井が常に高温放射源となり、その反射の影響の大きさは反射率（よって放射率）に依存する。

対象表面の波長λにおける放射率εと反射率ρの間にはキルヒホッフの法則から導かれる下記関係が成り立つ。

\[\varepsilon_\lambda + \rho_\lambda = 1 \] \hspace{1cm} (4)

ここで、対象は不透明であると仮定した。この関係を利用すると、熱画像装置の輝度信号は下記対応する。

\[L = \varepsilon_\lambda \cdot L_{h,d}(\lambda, T_{obj}) + (1 - \varepsilon_\lambda) \cdot L_{h,d}(\lambda, T_{amb}) \] \hspace{1cm} (5)

ここで、\(T_{obj} \) は対象温度、\(T_{amb} \) は背景温度を表す。右辺第1項が対象からの熱放射、第2項が対象表面での反射を表す。このことから、放射率\(\varepsilon_\lambda \) が小さい場合や対象温度\(T_{obj} \) が背景温度\(T_{amb} \) に近いかそれより低い場合などには、対象に映り込んだ背景からの放射が多くとらえられていることが分かる。市販の赤外線サーモグラフィ装置は装置内でモニタした室温を背景温度と考え、ユーザが設定した放射率値を用いて背景放射光の影響を補正して対象温度を求める。しかし、設定した放射率が真の放射率と違う場合や、背景温度がモニタしている温度と異なる場合には正しい対象温度値が指示されないことが上記から明らかである。

2.3 面積効果

放射温度計はある測定視野からの熱放射光のパワーを捉えて温度を求める。赤外線サーモグラフィも同様に、各素子が対象表面上のある微小領域を測定視野としている。視野外から放射される光は原理的には測定値には影響しないが、実際にはレンズ内部や表面での散乱、収差、回折、多重反射など、結像光学系の不完全さから検出素子に捉えられる光がある。このことは放射温度計の場合、測定視野より大きい一様光源を測定対象としてそのサイズを変化させたときに指示値変化として現れるため、面積効果（size-of-source effect）と呼ばれる。正確な温度測定には面積効果の小さい光学系が求められる。

赤外線サーモグラフィ装置に対して行った面積効果の評価例を図3に示す[2]。用いた赤外線サーモグラフィ装置は7.5-13 μm 帯を感度波長帯域とする熱型検出素子により640 × 480 ピクセルの画素数を持つ。測定最短距離0.3 mにおける視野角は24° × 18°で、0.5 m の距離から測定した。測定にはφ60 mmの黒体空洞を備えた黒体炉を100°Cに設定し光源とし、その前に開口径可変の室温のアパーチャを置き、アパーチャに焦点を合わせたサーモグラフィ装置の指示値をアパーチャ開口径を変えながら記録した。開口中心の約1 mm領域に相当する画素の指示値の平均をアパーチャ開口径を数mmから60mmまで変化させながらプロットして図3に示す。開口径が最大のφ55 mmの最大値に達してもまだ増加を続けている。このように、赤外線サーモグラフィ装置の面積効果は一般に大きく、スポット測定の赤外放射温度計と比べても数倍大きい。面積効果の影響の下では、校正用に用いた放射源と異なるサイズの対象を測定した場合に正しく指示値が得られない。
特集：赤外線サーモグラフィによる熱計測

３．熱画像を利用した放射率の補正

前章に示した赤外線サーモグラフィ装置を温度測定に適用した場合の様々な課題を解決することを目的に筆者らが開発した手法を紹介する[3,4]。熱画像の中で，\(T_{obj} = T_{amb} \)が成立する図2 c では，装置の放射率設定値を 1 として正しく温度が得られている。任意の対象温度でこの条件が実現できるようなら，放射率未知の対象温度を正しく測定できることになる。図 2 では背景温度固定で対象温度を変化させてパターンが消失する条件を得たが，逆に対象温度固定で背景温度を変化させてパターン消失条件が実現できれば，任意の対象温度で正しい温度指示値を得ることが可能である。

このために製作したデモ機を図 5 に示す。対象を加熱する面ヒータ（サンプルステージ）の斜め右手に赤外線サーモグラフィ装置の検出ヘッドがあり，左手には背景放射光を供給する面状温度可変放射源（補助熱源）を持つ。赤外線サーモグラフィ装置で捉える熱画像は，測定対象からの熱放射に補助熱源から放射され対象表面で反射した光が重畳して捉えられる。面状温度変放射源の温度変化させ，放射率パターンを持つ測定対象を捉えた熱画像のパターンが消失する条件を見出せば，その時の輝度温度が正しい対象温度である。この手法によれば，環境からの背景放射光の影響もない。さらに，捉えた画像には輝度パターンがなくともなくなるため，面積効果の影響も本質的にあり得ない。2章で挙げた課題全てを解決できる。

しかし，補助熱源の温度を変化させるには時間がかかり，高速の測定には不向きである。そこで，補助熱源の温度は一定にし，その前にシャッター

図 3 面積効果測定例[2]

図 4 面積効果の熱画像への影響[3]
補助熱源が開の時の熱画像を $L_{\text{Heat-source},1}$ とする時, 熱画像の高放射率部と低放射率部（例えばプリント基板の下地部分と金属部分）に着目し, それぞれの分光放射輝度を $L_{\text{Hi},1}(T)$ と $L_{\text{Lo},1}(T)$ とする. ここでは簡単のため波長依存性を記述から省略する. この時, 下記が成り立つ.

$$L_{\text{Hi},1}(T) = \varepsilon_{\text{Hi}} L_{\text{b}}(T) + \rho_{\text{Hi}} L_{\text{Heat-source},1}$$ (6)

$$L_{\text{Lo},1}(T) = \varepsilon_{\text{Lo}} L_{\text{b}}(T) + \rho_{\text{Lo}} L_{\text{Heat-source},1}$$ (7)

同様に, 補助熱源が開の時の (シャッターの) 放射輝度を $L_{\text{Heat-source},2}$ とし, 上記と同じ個所の分光放射輝度を $L_{\text{Hi},2}(T)$ と $L_{\text{Lo},2}(T)$ とする時, 下記が成り立つ.

$$L_{\text{Hi},2}(T) = \varepsilon_{\text{Hi}} L_{\text{b}}(T) + \rho_{\text{Hi}} L_{\text{Heat-source},2}$$ (8)

$$L_{\text{Lo},2}(T) = \varepsilon_{\text{Lo}} L_{\text{b}}(T) + \rho_{\text{Lo}} L_{\text{Heat-source},2}$$ (9)

(6)式から(9)式を用い, (4)式と同様の $\varepsilon_{\text{Hi}} + \rho_{\text{Hi}} = 1$ および $\varepsilon_{\text{Lo}} + \rho_{\text{Lo}} = 1$ の関係を考慮し, 黒体放射輝度は下記 (10)式で記述できる.

$$L_{\text{b}}(T) = \frac{L_{\text{Hi},1}(T) - R_{p} \cdot L_{\text{Lo},1}(T)}{1 - R_{p}}$$ (10)

ここで, R_{p} は高放射率部と低放射率部の反射率の比で, 下記式で表され, シャッター開/閉で測定された 2 枚の熱画像から得られる.

$$R_{p} = \frac{\rho_{\text{Hi}}}{\rho_{\text{Lo}}} = \frac{L_{\text{Hi},1}(T) - L_{\text{Hi},2}(T)}{L_{\text{Lo},1}(T) - L_{\text{Lo},2}(T)}$$ (11)

すなわち, (10)式で表される $L_{\text{b}}(T)$ は 2 枚の熱画像から得られる 4 枚の測定値から計算できる. 補助熱源の温度をモニタすることも不要である. この値から対象が黒体であるとして T を (1) 式のプランクの式を用いて求めることができる.

図 6 にこの測定原理を示す. 横軸には補助熱源放射輝度, 縦軸には赤外線サーモグラフィ装置の捉える輝度信号を表す. 低放射率部, 高放射率部それぞれの輝度信号は補助熱源の温度上昇に伴い増加するが, その傾きはそれぞれの反射率であり, 直線的に増加する. この反射率の比を測定により求めれば, 直線の交点である両部位の輝度が一致しパターンが消失するときの輝度 $L_{\text{b}}(T)$ が計算により求められる.

この方法によれば, 高放射率部と低放射率部の反射率 (比) が一定である限り, 補助熱源前のシャッターの開閉は一回行えばよく, 例えば温度測定前に (11) 式により R_{p} の値を決めておき, その後はこの値を (10) 式に適用して連続的な高速温度測定が可能になる. そうすれば補助熱源による対象温度駆動の可能性もない. 理想的には補助熱源は対象表面での反射の散乱を考慮しても測定対象に比べ十分大きいことが求められ, 有限サイズの補助熱源が測定に及ぼす影響はケースごとに検討する必要がある. 現在, この手法の電子デバイス内発熱モニタ装置への適用を進めている. また, 放射率パターンを持たない対象へ適用可能な温度分布測定手法の開発も行っている[5].

図 6 は反射率比測定による放射率補正原理 [4]
4. 赤外線サーモグラフィ装置の温度校正
試験校正機関等が行う赤外線サーモグラフィ装置の温度校正には、黒体放射源を用いた標準赤外放射温度計との比較による校正方法、もしくは標準赤外放射温度計等により値づけられた標準黒体放射源を用いた校正方法が適用される。産総研計量標準総合センターでは、このための標準整備とトレーサビリティ体系の構築を進めてきた。

-30 °C から 160 °C の温度域では接触型温度計を介して 1990 年国際温度目盛(ITS-90)にトレーサブルな標準を確立している[6]。基準黒体放射源として、液体温槽に内面黒化した金属製黒体空洞を挿入した黒体空洞を用いる。この場合、液体温槽温度を測定する温度定点校正された抵抗温度計が参照標準器となり、この温度目盛が校正機器の試験校正機関等が所有する赤外標準放射温度計(測定波長:10 μm 帯等)あるいは標準黒体放射源(液体温度変動黑体炉)に比較により移される。

2.2 節で述べたとおり、室温以下の低温域では赤外放射の空洞からの反射の影響を強く受けるが、このことは一般に見落とされがちである。産総研では標準黒体放射源の黒体空洞の放射率評価を精密に行い、その影響を校正法不確から含めることで信頼性ある標準を確立している。また、赤外放射温度計の面積効果の精密評価も併せて実施している。

160 °C から 500 °C の温度域では、定点黒体に対しても校正された近赤外標準放射温度計(測定波長:1.6 μm)を参照標準とし、カーボンナノチューブ黒化処理により高放射率を実現した温度可変黒体炉を開発、これを用いて試験校正機関等が所有する赤外標準放射温度計(測定波長:10 μm 帯等)の比較校正を新規に開始した[7]。

現在、160 °C 以下の温度域では第 3 者認証を必要とするユーザ向けに JCSS 制度による校正を準拠中である。さらに、赤外線サーモグラフィ装置の視野全体を同時に校正可能な高放射率の一様面黒体放射源の開発にも取り組んでいく計画である。

5. おわりに
赤外線サーモグラフィの普及により、これまで温度測定に関わりがなかった新たなユーザを取り込み、赤外線放射温度測定が適用される場面が増加している。これまでのスポットの測定から分布測定へ展開できることがユーザへの大きなアピールとなっており、熱画像のビジュアル化に温度指示値が得られる手法をも魅力である。国際的には赤外線サーモグラフィ装置に関する国際規格を作成しようとする動きも始まっている。

しかし、指示温度の信頼性を考え始めた途端、困惑するユーザも多いと推察する。放射温度計は実用上唯一の非接触温度計でありながら、信頼性ある測定を行うのは一般に容易ではない。赤外線サーモグラフィ装置はスポットの放射温度計よりさらに温度測定器としての特性には制約があることを理解しておく必要がある。赤外線サーモグラフィ装置により正しい温度指示値を得、その信頼性レベルを正しく評価できるためには、ユーザが放射温度の正しい知識を持ち、信頼ある標準トレーサビリティを持つ機器を用い、最良の手段を組んで測定を行うことが求められる。装置の普及に放射温度測定の知識の普及が遅れないことが望ましい。今後も赤外線サーモグラフィ装置を使用した放射温度測定の技術開発に関わる情報発信に努める所存である。

参考文献
[1] 新編温度計測、計測自動制御学会（1992）
サーモグラフィによる温度・伝熱計測非破壊診断

Heat Transfer Measurement and Nondestructive Diagnosis Using Thermography

稻垣 照美（茨城大学）
Terumi INAGAKI (Ibaraki University)
e-mail: hotaru@mx.ibaraki.ac.jp

1. はじめに
サーモグラフィは、対象物から発せられる熱エネルギーを感知し、その表面温度場をリモートセンシングで評価する手段であるとともに、複雑な形状を有する二次元温度場をリアルタイムにかつ画素毎に診断・評価することが可能な手段でもある。さらに、サーモグラフィは、液体窒素冷却センサから2次元非冷却センサへの進化を遂げたことにより格段と安価になり、取り扱いも容易となった。そのため、现在では工学・理学・医学など様々な分野で広範に利用されるに至っている。一方、熱科学（特に伝熱学）の分野においては、サーモグラフィによる定量計測はこれまで困難とされ、むしろこれを可視化手段として利用することが一般的であった。本稿では、サーモグラフィによる定量的な温度・伝熱計測の簡便な活用法や有効性を広く公知するため、等熱流束加熱された垂直な平滑平板に沿う自然対流の伝熱計測にサーモグラフィを応用した事例、分光放射温度計としてサーモグラフィを活用した事例、そして非破壊診断にサーモグラフィを援用した事例について紹介する。

2. サーモグラフィの応用事例と注意事項
2.1 伝熱計測の実例
本稿では、まずサーモグラフィ装置の基本的かつ一般的な特性や注意点について述べる。著者が使用しているサーモグラフィ装置は、センサ：2次元非冷却Hd-Cd-Te、検出波長域：7～14 μm、温度測定範囲：40～500℃、測定分解能：0.03℃、空間分解能：1.2 mrad、測定距離：10 cm～∞、フォーカス：オート/マニュアル、である。一般に、1つの熱画像あたりの水平および垂直走査範囲と画素サイズは、サーモグラフィ装置の検出部と計測対象との距離によって異なる。$

\nu = \frac{\text{温度}}{\text{温度計}}$

\nu

\nu
影響角度によって見掛け表面温度が変化した事例（撮影角による見掛け温度の低下）である。計測者は、真の表面温度や放射率などが同一であっても、これらの点に十分な注意を払う必要がある。なお、実際の伝熱計測では、サーモグラフィによる計測誤差を可能な限り低減するために黒色塗料（黒体塗料）を対象伝熱面に塗布するなどして放射率を可能限り大きくすることが望ましい。液相面における伝熱計測では赤外線の透過率が小さく、かつ表面の放射率が大きいため、特段の措置をしなくても十分な計測精度が得られることが多い。

サーモグラフィによる伝熱計測では、上述した事項に注意しながら取得した画素ごとの温度情報、壁面熱流束、ヒートシンク温度から対流熱伝達率を算出することができる。対流に寄与する熱流束は、画素ごとに同定した放射率に基づいて印加熱流束から放射熱流束成分を差し引いた値となる。ここで提示した伝熱計測の詳細は、放射率の同定法が示された文献（例えば[5], [6]）、対流熱伝達率の算出法が示された文献（例えば[7]）などを参照されたい。図3は、伝熱面下端からの距離を代表長さとした局所ヌセルト数―局所修正レイリ数平面上に、等熱流束加熱された垂直な平滑平板に沿って発達する自然対流の局所ヌセルト数を示した事例である[8]。図4は、図3の算出根拠となった熱画像（上図：層流域、下図：乱流域）である。図中には、下記の層流域と乱流域の伝熱相関式を併せて掲載した。

層流域： \[N_u = 0.512 \times R_a^{0.2} \] \[\cdots (1) \]
乱流域： \[N_u = 0.175 \times R_a^{0.256} \] \[\cdots (2) \]

図4の上図からは境界層が層流域において発達する様子が観察され、下の図からは乱流域において低温パターンと高温パターンが時空間的に変遷する様子が観察された。サーモグラフィは非定常な二次元温度場の可視化情報を定性的・定量的に取り扱えることから、今後も様々な伝熱現象の解明
に資することが期待される。

2.2 赤外分光放射温度計測の一例

一般に, 分光放射温度計は計測対象表面の放射率に依存せず温度計測を可能とするツールであり, これまでにも二色温度計[9]として幾つか市販もされて いる。これらの分光放射温度計は, 中高温度域の計測対象に対する温度計測手段として鉄鋼業界などでも高頻度に利用されている。

著者は, 放射率や反射率に加え, 周囲の環境条件に依存することなく常温域まで真の温度を推定できる赤外分光放射温度計（二色・三色分光放射温度計）を提案し, その適用性を実験的に検証した[10], [11]。この計測法は, 計測対象物表面から放射される赤外線を3種類のフィルタj, k(=1, 2, 3)で分光した後に赤外センサが検知する放射率\(\varepsilon_j \)に基づいて構築された計測体系である。しかしながら, 物体表面の放射率には僅かながらも波長依存性が存在しており, 設定した仮定（二色計: \(\varepsilon_j = \varepsilon_k \), 三色計: \(\varepsilon_j = \varepsilon_k = \varepsilon_l \) ）が物理的には必ずしも厳密なものではなく, それ故に計測誤差の一因ともなっている。

このことから, もう一つの赤外分光放射温度計[4]では, 前述した赤外分光放射温度計[10]に放射率比なる物理量を導入して計測原理の適正化を図り, 温度計測の高精度化と汎用化を意図した。すなわち, 3種類のフィルタで分光された赤外線が検知する放射率\(\varepsilon_i[-] \)(i=1, 2, 3)を以下の実験値に基づいた一定の放射率比\(\alpha[-] \)および\(\beta[-] \)を導入して放射率比を線形モデル化し, 同定した線形近似式から真の温度を推定する。この赤外分光放射温度計は, 周囲の温度環境に依存する外部熱源, 計測角度, あるいは各種表面性状などが温度計測
図7 Measured emissivity and temperature using spectroscopic thermography

図8 Nondestructive diagnosis using thermography

図9 Principle of detecting an invisible internal flaw
deformation: thermal diffusivity:
(a_s: Surroundings, a_d: Internal defect)
特集：赤外線サーモグラフィによる熱計測

図10 Surface temperature field of subject which has an invisible internal defect (left: thermal images indicated with thermography, right: temperature distribution determined from numerical computation)

範に普及した技術である。診断原理は，不可視な内部欠陥を有する材料や機器構造物などを内部や外部からアクティブやパスイに加熱または冷却した場合，対象物内部の欠陥周囲に熱流の乱れが生じ，それに誘起された不均一な表面温度場をセンシングして不可視な欠陥を遠隔かつ非接触に可視化識別するものである。例えば，図8と図9に示すように，診断対象（例えば鋼材）の熱物性とは異なる熱物性から構成される不可視な内部欠陥（例えば空気）を有する診断対象物を裏面から加熱した場合，裏面から表面へ熱流が通過する過程で内部欠陥部が熱抵抗となり，欠陥直上の表面温度場に生じた温度ひずみ（低温領域）をサーモグラフィが検知することになる。診断用熱源としては，太陽入射熱・放射冷却熱・内部発熱などパッシブな熱源が利用可能な点もこの診断法の便利さの一つである。

図10は，長さ20mm×幅10mm×深さ8mm（表面から2mm深部）の矩形状内部欠陥を有するアクリル樹脂試験片（長さ100mm×幅50mm×厚さ10mm）を裏面から同一条件にて等温加熱した際のサーモグラフィと数値シミュレーション結果（表面温度場）であり，加熱後0s，2400s，3600sにおける試験片表面の二次元温度分布を示している。左の熱画像はサーモグラフィによる観測結果であり，右の図は数値シミュレーション結果である。これらの

図11 Contaminated water storage tank in F1 atomic facility and its scale-down model

(a) 30 s after start heating (b) 30 s after stop heating

Input heat flux: 868 W/m², Material: Carbon steel

熱画像では，温度カラーチェックを最高温度と最低温度の9段階に色分けしてある。これらの熱画像から，加熱時間の経過とともに不可視欠陥を示唆するイメージが低温領域としてより明瞭となっていることがわかる。

一方，サーモグラフィを援用した非破壊診断は構造物に内在する不可視な内部欠陥の診断だけではなく，福島第一原子力発電所における放射性物質を含んだ汚染水貯蔵タンクや臨海部における各種燃料タンクなどの液面や漏洩管理にも適用されている。特に，原子力プラントなど人間が近寄り難い区域，即ち管理区域における機器構造物や構造材料などの検査や維持管理を遠隔で実施できる手法としても有望である。さらには，深刻な社会問題ともなっている地下鉄や新幹線などのトンネル内壁の剥離・落下事故の未然防止の対策を含む，原子力プラントなどの検査や維持管理を遠隔で実施できる手法としても注目されている。その他，サーモグラフィを援用した非破壊診断は，木造建築の内部構造診断・コンクリート面の崩落危険度診断・道路の舗装危険度診断など，二次元かつ非定常診断ツールとしてプライマリーや次に多方面に活用されている。例えば，図11は，福島第一原子力発電所における汚染水貯蔵タンク（左図）とその実験用モデルタンク（右図）であ
図 12 は、実験モデルに外表面側から等熱流束ふく射熱を照射開始後（あるいは照射停止後）にサーモグラフィにより取得した熱画像である。これらの熱画像では、温度カラーを最高温度と最低温度の 9 段階に色分けしてある。図中の矢印は、タンク内部の液面（水面）位置である。加熱開始後あるいは加熱停止後いずれであっても、熱伝導率や熱伝達率の小さい気相側（空気側）表面において高温となっている。これは外部から内部（あるいは内部から外部）へ熱流が侵入する過程において気相が熱抵抗となっている証拠である。気液界面位置は、この温度変化から推定することができる。もし何らかの適切な画像処理を導入出来れば、より定量的に気液界面位置の特定が可能となるであろう。この点については、現在検討中である。

3．まとめ
本稿は、可視化情報手法の一つのツールであるサーモグラフィによる温度・伝熱計測と非破壊診断について概説したものである。ここでは、等熱流束加熱した垂直な平滑平板に沿って発達する層流域および乱流域自然対流の伝熱計測事例、赤外分光放射温度計における温度計測事例、液面非破壊診断事例などを取り上げながらサーモグラフィに付随する有効性、利便性、あるいは若干のコツについて話題を提供した。サーモグラフィは広範囲な温度場を短時間に観察できるため、本稿は例えサーモグラフィに特化したポストプロセッシングとしての画像処理手法の開発や、紫外線など短波長の光学系と組み合わせた光学的温度計測手法の開発が様々な工学現象の解明に利するものと考えられる。

参考文献
[1] 黒川賢、稲垣照美、安久正紘、岡本芳三、赤外単素子センサを用いた機械的走査型サーモグラフィ装置の最小検知寸法に及ぼす要因分析、可視化情報学会誌、19-74（1999）51-56。
1. はじめに
携帯電話に赤外線カメラがごく普通に装着されるようになり、赤外線サーモグラフィに、日常の生活で身近に接する機会が多くなった。一方で、これらサーモグラフィを実際にどのように研究のレベルで伝熱解析や材料開発に結びつけていくのか、その正確な位置付けが求められている。
本稿では、マイクロスケール赤外線サーモグラフィの装置開発と、実際に観測したさまざまな熱現象を解説し、その特徴と克服すべき課題を探りたい。

2. マイクロスケール IR イメージング とは
2.1 端緒：ふたつのきっかけ
1990年代初頭に、当時国内で入手可能であった赤外線カメラを用いて、材料内部に与えた温度波の伝播の観測を試みたことがある。結果は不成功で、温度波の観測はできずに終わった。それから約10年が経過し、2位相型デジタルロックインアンプの替わりに、赤外線カメラを用いて温度波を検知する再度の機会に恵まれた。米国製の量子型赤外線カメラが、日本に輸入許可になった直後のことであり、約7.5μmの空間分解能で高分子フィルムの中を伝播する数Hzの温度波を観測することができ、マイクロスケール熱イメージングの可能性を確認した。同時に、もうひとつ熱現象に遭遇した。
当時、単一細胞の物性計測技術を開発する目的で細胞冷凍の実験を行っていたが、ペルチエ素子で冷却中の細胞組織を赤外線カメラの下においてみたところ、図1に示すような、無数の閃光のような光が現れては消えていった。細胞内の水が冷却して氷になる瞬間の潜熱を観測したのだが、この現象は、熱物性と伝熱の計測という観点から、極めて重要な点を示唆していた。熱容量やエンタルピーを計測する従来のカロリーメーター等に代表される熱分析装置での収束は、平均的な温度上昇を計測し、発生したエンタルピーは瞬時に散逸すると仮定し、その伝播までを考慮していない。試料温度が均一ならその必要はないと思われがちであるが、このときの植物細胞のように、細胞壁で区切られた細胞が冷却されるとき、あくまで細胞は、ランダムに結晶化し、つまり潜熱による伝熱を受けた細胞は、同時に結晶化しない。これらの現象を含め、伝熱を考慮したCCD全画素によるマイクロスケール2次元熱分析を実現すべく、装置開発を開始した。

図1 植物細胞の冷凍過程における、細胞内の水の結晶化潜熱の発生と伝播の様子。時間微分画像をともに示す[1]。

2.2 スターリングクーラーと防振設計
意外にことに、ミクロスケールで熱画像を得ようとするとき、装置設計上の最初の壁がスターリングクーラーによる振動の問題であった。空間分解能をあげていくと、この振動によりCCDの画素がぶれてしまい、逆に空間分解能が低下する恐れさえある。どんなにレンズ設計がよくとも、防振が十分でないと、マイクロスケールの空間分解能は達成できない。カメラ支持台の材質、重量、一般的な防振台の使用、クーラーの選定等、振動の影響を極力少なくすすめる設計が求められる。

2.3 赤外線波長用顕微鏡レンズ
マイクロスケールの熱現象を観測するためには、赤外線波長の顕微レンズが必須である。植物細胞...
伝熱 2015年7月 - 28 - J. HTSJ, Vol. 54, No. 228

特集：赤外線サーモグラフィによる熱計測

の冷凍過程を初めて観たときには倍率4倍の米国製の顕微鏡レンズを使用したが、全長約20センチのレンズ設計は、防振という観点からは、不利である。より高倍率を目指すためには、小型化も含めたレンズの光学設計が必要であった。そこで、バックファーカスを確保したうえで焦点距離を短くすることのできるレトロファーカス配置を採用し、顕微光学レンズの設計・試作を行なった。この方法では、レンズの色収差がより顕著になるため、近年の反射防止コーティング技術の進歩が、実用的なレベルでのレトロファーカス配置を可能にしたことも重要である。

一方で、光の干涉の性質から、有限の直径を持つレンズを通過した光線の焦点像の分解能には、回折限界があり、レーリーによれば、分解能は

\[r = \frac{1.22\lambda}{2NA} \]

\(\lambda \)：光の波長、\(NA \)：対物レンズの開口数となる。

FPAの画素数やピッチ、感度波長や顕微鏡の倍率により、顕微光学レンズの設計は毎回変更する必要があり、広範囲な倍率、マイクロプローマータ型FPAも含めると、試作の種類は10本を越えたが、例えばInSb素子の場合、中心波長付近で3~3.5μmの分解能を実現している。図2には、自作の10倍顕微鏡レンズを装着した場合のUSAFテストチャートによる空間分解能テストパターンの顕微鏡観察例を示した。

図2: 倍率10倍の顕微鏡装着時のUSAFテストチャートによる空間分解能テストパターンの顕微鏡観察例。赤外線FPAはInSb素子、赤外線カメラはTitanium（Cedip社（当時））、およびSC6000（FLIR社）、画素数は640×512。

2.4 輻射率分布と温度変換

マイクロプローケールで物体の表面を観察すると、その微細な構造が現れる。これは温度校正のために用いる黒体のコーティングでも同様で、均一であるどころではなく、粒子やその周囲の凹凸までが観察され、校正用擬似黒体の放射率分布を観察することになる。したがって、マイクロプローケールの熱画像を温度変換する場合には、さらに実験上の工夫が必要である。加えて、相転移が起こる系では、相が変わるごとに、放射率の温度依存性も変化することが多い。これを解決する方法の一つとして、全ピクセル同時温度変換法、すなわち、温度データの画面スーパーアインポーズにより温度を求めるアルゴリズムを開発し、放射率の温度依存性の変化に対応できる方法論を実現した[2]。

図3は、スーパーアインポーズ機能を備えたマイクロプローケール赤外線画像測定装置の概念図を示す。スーパーアインポーズとは映像技術で用いられる手法で、画面内に複数のデータを重ねることを意味するが、データ出力形式の汎用性を重視してNTSCデータにAD変換後の温度データを同時に書き込むアルゴリズムの例を示した。信号同期、信号合成、およびAD、DA変換はすべてFPGAプロセッサで行ない、バイナリデータの書き込み、呼び出しには、独自のプロトコルを作成した。

図4は、この手法により求めた量子型および熱型赤外線センサーによる植物細胞冷凍過程の細胞毎の発熱現象を捉えた画像を示す、全放射率補正を、温度走査（この場合は冷却）の各温度に対応
して全画素に対して計算し、画像内の明暗は左横の温度軸に対応する。つまり、CCDの画素数60,000点に対応する温度測定を行なっていることに対し、量子型（InSb）に対して、熱型（VOx）では、空間分解能、高速性という点で、量子型には及ばないものの、相転移による発熱現象を捉えることは十分可能であることも示された。この方法論は、後述する熱型FPAの擬似高速化にも応用されることになる。

図4 量子型および熱型赤外線FPA素子と顕微レンズによる植物細胞の冷凍過程の熱画像。

図5 a)窒化ケイ素を基材とするマイクロチップTCG3880(Xensor Integration, NL)の赤外画像（室温）、b) 40℃の赤外画像、c) 約5℃のサーモパイルセンサーの温度は電圧値より読み取る。c) y-z面での温度勾配ベクトル図。

図6 血管内皮細胞の培養液中、冷凍過程の潜熱発生の様子。

図7 エリスリトール等温結晶化時熱とモルフォロジー[5]

3. 量子型カメラによるミクロスケール熱画像

3.1 可視化高速熱分析

市販のマイクロチップ型サーモパイルセンサーを用いた高速熱分析（〜2000 K/s）を、マイクロスケールサーモグラフィと組み合わせることで、可視化熱分析が可能である[3]。図5a, bの6点のドットは、マイクロチップ内に埋め込まれたサーモパイルで、電圧値で温度を正確に読み取ることができる。中心部50µm四方のマイクロヒーターにナノグラムオーダーの試料を載せ、加熱冷却過程の相転移の温度変化を観測するが、赤外線画像と併用することにより、面内の温度分布のみならず、外気との転換の影響を検証することができる。図5cは、アモルファスの窒化ケイ素の中の結晶化温度とモルフォロジーが異なる様子を界面の潜熱発生とともに図7に示す。

3.3 蓄熱材

n-アルカンや糖-アルコールは蓄熱蓄熱材として利用されるが、相変化の界面温度を実測することにより、相変化のキネティックスの温度依存性について定量的な解析が可能となる。エリスリトールは結晶化温度により結晶化モルフォロジーが異なる様子を界面の蓄熱発生とともに図7に示す。
特集：赤外線サーモグラフィによる熱計測

界面温度の実測による結晶化キネティックスのマイクロスケール解析を、新しい方法論の一つとして提案した[5]。

3.4 フェムト秒レーザーによる微細加工

収束フェムト秒レーザー照射によるマイクロスケール微細加工域の熱物性変化を、同じくマイクロビームレーザーを照射した交流スポット加熱による温度波印加の熱画像として可視化し、定量的に評価する手法を次に示す[6]。図8は、75μm厚さのポリイミドフィルム内部の約50μmの直径エリア内8層に2μm毎に収束レーザー光をスキャンして形成したマイクロボリューム加工域の内部および外側に照射した温度波の伝播の様子を位相相として捉えた例である。

図7 カプトンフィルム内の加工域を伝播する温度波位相像

未加工の均一なフィルムの領域では、温度波の伝播は一様で、位相変化も距離に対して直線的に変化するのに対して、加工域では、マイクロボイドの発生やポリマーフィルムの配向緩和等の構造変化により、位相変化に歪みが生じる。熱拡散率の変化のみでなく、マイクロスケールの非破壊検査（NDT）ともいうことができる。

3.5 複合系の熱拡散と異方性

赤外線カメラでは面内の伝熱の異方性を可視化できるが、大きな利点である。複合材料はもちろん、分子の異方性を利用して物性を発現するための統計的フィルムスケールでは、このような解析手法を有効である。図9A, Bに、1）炭素繊維（直径10μm）/ポリエチレン樹脂、2）炭素繊維織物（カーボンクロス）、3）炭素繊維/エポキシ樹脂の複合系の温度波の伝播の様子と位相相およびそのプロファイアルの例。

図9 1）炭素繊維/ポリエチレン樹脂、2）カーボンクロス、3）炭素繊維/エポキシ樹脂 複合系の温度波伝播の様子

3.6 フライングスポット法

前節までは、熱源としてのレーザーは、固定位置照射であるが、レーザーの照射位置をスキャンすることで、熱拡散率分布の解析や、マイクロ構造と温度波の干渉などの特異な現象を観測できるようになる。このような考え方はマイクロスケールでは従来からあったが、マイクロスケールへの応用を試みた。出力100mWのレーザーダイオードを光学ビックアップにより、xy面内スキャンを行ない、直径4mmのレンズ（NA=0.5）を用いて、焦点位置で約1.5μmのミクロ熱源として集光し照射した[8]。実際に一定速度で、空孔を含むフィル
ム内をスキャンしたときの赤外画像の例を図10に示す。このときの位相画像は、固定位置のスポット加熱の場合とは異なり、スキャンした画面全域の位相データを得ることができる。つまり、全域の物性値をスキャンにより求めることができる。

マイクロスケールのフライングスポット法は、コンポジットなど、均一でないミクロ構造を持つ物質の熱物性の解析に有効である。

図10 マイクロスケールフライングスポット法による赤外画像と固定照射の場合の位相像の比較。A-C:スキャン過程の赤外実像。D:位相画像（固定）。E:位相像（スキャン法）。F:振幅画像（スキャン法）。

4. 熱型赤外線カメラによる物性測定

4.1 擬似高速化

さて、本稿冒頭に述べた熱型赤外線カメラは、近年その性能の向上が顕著で、安価であることから、汎用型測定器としての応用が期待されている。[9]ただし、量子型（InSb）に対して、熱型（VOx）では、空間分解能、高速性という点でおよばない。筆者らは熱型センサーの応答速度を克服する手段のひとつとして、周期的な熱現象の観測における擬似高速化の方法論を提案している。図11にその概念図を示す。通常、周期加熱の熱源とカメラ撮影のタイミングは同期せず、時間遅れがあるが、この時間遅れを正確に測定することができれば、複数のサイクルの測定から、画像を再構成し、時間分解能を損なうことなくS/N比を向上させることができる。このために、2.4節で触れたスーパーインボーズ機能を周期的な発熱現象に対して適用した。実際に、図12に示すような、延伸フィルムの異方性を温度波伝播の位相分布から求める場合、擬似高速化により、位相の空間分布におけるS/N比の向上が明らかである[2,7]。

空間分解能については、熱型FPA用赤外線長波長域のレトロフォーカス設計による顕微レンズを開発し、波長限界までの空間分解能を達成している。NETDは、量子型FPAが20 mKであるのに対して、ボロメータは50 mK程度とされる。17 μmピッチ以下の高解像度CCDでは1画素あたりの光量は低減するが、上述した擬似高速化や、全画素温度変換等の手法を駆使することで、熱型FPAによってもマイクロスケールの熱分析や熱物性測定の可能性が広がることを確認した。

4.2 小型ポータブル測定器

実際に、熱型赤外線カメラを用いて試作した、小型ポータブル（B5サイズ）顕微赤外線サーモグラフィによる熱物性測定装置の概観を図13に示す。熱分析と熱物性を統合したマイクロスケール熱イメージング装置である。
5. 新しい展望

5.1 赤外線分光スペクトルイメージング同時測定

興味深いことに、ほぼ時を同じくして、赤外線分光測定（IRスペクトル）においても赤外線FPA（Focal Plane Array）が応用され始め、赤外分光イメージングという分野が、医薬品、有機・高分子材料の分野で急速に発展した。赤外分光と赤外線サーモグラフィではいずれも赤外線FPAをセンサーとして用いながらも、別の事象を観察する目的で、別個に使い分けていた。両者を同一のセンサーで同時測定することで、熱発生のメカニズムを化学イメージングとともに観察する新しい融合技術を提案している。

5.2 Nodal & Modal Method

上述の実験手法による種々の伝熱における物性データは、まず実験的に達成した境界条件のもとで熱物性値を得ることができるが、より厳密には、数学的なモデルで検証し、物性値を確定していく必要がある。そのための種々の逆問題の手法を用いた数値解析Nodal Method, Modal methodを進めている。測定技術とこれら数値解析の手法の融合もまた、より精度高い測定には必須である。

6. まとめ

以上、マイクロスケールサーモグラフィの測定技術について、実際の観察例に基づいて最近までの流れを概説した。日進月歩で赤外線イメージセンサー（Focal Plane Array（FPA））が開発されていく過程で、これらの総合技術としての赤外線イメージング法の、より一層の進歩を期待している。

参考文献

赤外線サーモグラフの温度測定における空間分解能の推定法の提案

微小電子部品の温度計測に応用するために

Proposal of Simplified Estimation Method of Spatial Resolution of Infrared Thermograph

- To Use in Temperature Measurement of Microscopic Electronic Components-

平沢 浩一（KOA 株式会社）
Koichi HIRASAWA (KOA Corporation)
e-mail: ko-hirasawa@koanet.co.jp

１．はじめに

車載電装機器に代表されるように、電子部品の使用環境の高温化が進み、設計段階での電子部品の温度確認の重要性が増している。昨今、赤外線サーモグラフが低価格で市場に出回るようになり、通常のカメラと同じように手軽に使用できることから、電子部品の温度確認に多用されるようになった。

しかし、誤った使用方法も散見される。放射率を合わせなければならないことなどは良く知られているが、空間的な分解能、微小領域のピーク温度の検出能力については考慮されないことが多い。

赤外線サーモグラフウェアは、受光素子1画素に相当する被写体の大きさについては公表している。しかしこの数値と微小領域のピーク温度検出能力の間の関係について明示していることはまれである。ここでは、赤外線サーモグラフで微小部品の温度を正確に測定するために、電子機器設計者が自身で赤外線サーモグラフの微小領域のピーク検出能力を把握する方法について提案する。

２．赤外線サーモグラフの拡大率とピーク温度検出能力

2.1 レンズ拡大率の表記

ここでは、X[μm]四方を受光素子1画素に拡大できるような拡大率のレンズをX[μm]レンズとよぶことにする。たとえば、図1に示すように、25μm四方を受光素子1画素に拡大できるようなレンズを25μmレンズとよぶ。

2.2 表面実装抵抗器の構造とホットスポット

想定する計測対象として、微小部品の代表である表面実装抵抗器を例として挙げることを図2に示す。

抵抗器の基材は耐伝導の良いアルミナセラミックスでできている。基材の両端には、プリント基板の鋼箔パターンに電気的に、機械的に接続するための端子が形成されている。接続手段は一般的には、はんだ付けである。抵抗体は両電極間に膜状に形成されており、その中央付近では製造過程で抵抗値を所望の値に調整するために、抵抗体をレーザーで蒸発させた線状の跡がある。この跡をトリミングラインとよんでいる。

両端子間に電位差を与え、抵抗体に電力を加えると、トリミングライン先端部に局所的に電力密度が高い部分が形成され、他の部分よりも高温になる。この局所的に高温になる部分を抵抗器のホットスポットとよんでいる。

図1 X[μm]レンズの定義

図2 表面実装抵抗器構造と表面ホットスポット
通常、このホットスポットは直接観測することはできない。抵抗体の上面には抵抗体を保護するためのコーティングが施されているからである。コーティングをとおして観測されるホットスポットを表面ホットスポットとよぶ。

抵抗体で発生した熱の9割以上は、熱伝導により、端子部を通じて基板に放熱される。表面実装抵抗器は表面積がきわめて小さいため、基板を放熱板として利用して自分を冷却している。それゆえ、表面実装抵抗器の温度管理は端子部で行われるようになっているが[1]。安全上、表面ホットスポット温度の測定も重要である。

2.3 レンズ拡大率の違いによる表面ホットスポット温度の測定値の違い

図3は、長さ1.6 mm・幅0.8 mmの表面実装抵抗器をプリント基板に実装し、0.25 Wを与えた場合の温度分布を、さまざまな拡大率のレンズを装備した赤外線サーモグラフで測定した結果である。

温度分布は、図中下部に示した、抵抗器表面の長さ方向の破線に沿ったものであり、その経路はホットスポットを含むように選定されている。当然、ピーク温度はホットスポットで観測されるが、明らかに、拡大率の低いレンズほどピーク温度が低くなっていることがわかる。これに対し、端子部の温度はどのレンズを使ってもほとんど変わらない。

ここで着目すべき点は、25μmレンズで測定したピーク付近4点の平均付近の温度で、100μmレンズで測定したピーク温度に近いわけではない。100μmレンズでは25μmレンズと比較してピーク検出能力が著しく劣るということである。同様のことが100μmレンズと200μmレンズの間でも見られる。このことは、図4により示すように、100μmレンズでは、仮に被測定物の高温部分が、1画素を覆うように画素の中央にあたっても、100μm四方のみ高温度まで観測できるような被測定物のピーク検出は捉えられないことを示している。

シュミュレーションの結果[4]などから、図3の抵抗器の表面ホットスポットは直径100μm程度であり、この温度分布を測定した赤外線サーモグラフでは、25μmレンズがピーク温度を捉える下限の拡大率であることがわかった。1画素の大ささとピーク検出可能な面積の差違

図3 破線に沿う温度分布の実測値

図4 ピーク検出可能面積に対する誤解の説明

は、レンズの面積効果を含んだ赤外線サーモグラフという測定系全体の変調伝達関数（Modulation Transfer Function；略称 MTF）の影響とみることができる。MTFは空間的なローパスフィルタの特性を持ち、MTFがわかれば微小領域の温度ピーク検出能力がわかる。

3. 赤外線サーモグラフの微小領域のピーク検出能力の定量化

3.1 従来からある方法とその問題点

従来、MTFの測定には、温度を一定に保った疑似的な黒体面にスリットを設け、スリットの縁にフォーカスを合わせてスリット内の温度を測定した場合、どの程度の縁が不明瞭になるかを測定する方法が用いられてきた。文献[2,3]などにその方法が規格あるいは提言としてまとめられている。
概略を図5に示す。確かにMTFを正確に求めるためにはこのような手法が必要であろう。しかし、冒頭に記述したような電子機器設計者が容易に行える方法ではない。また、赤外線サーモグラフメークもMTFを公開することにはほとんどない。精度は高くなくてもよいので、電子機器設計者自身が、自分が担当する機器設計の温度確認プロセスにおいて、手近に使える赤外線サーモグラフで、どこまで狭い領域のピーク温度まで捉えることができるのかを把握していることが重要である。そのための簡便な手法が求められている。

3.2 均一加熱面の局所放射率変化に基づく評価方法

本稿で紹介する方法[4]は、そのような要求を満たすために考案されたものであり、使用する器具はほとんどが電子機器設計者であれば自由に使用できるものばかりである。図6にその測定系を示す。電子機器設計者にとっては、微小領域内で現実に温度差がある明瞭な境界部分を作り出すことは困難である。しかし、現実に温度差の境界を作るのはなくて、同一温度であっても、赤外線サーモグラフにとっては明瞭なステップ状の温度境界を作り出すことは可能である。ここでは、MTFを推定したい赤外線サーモグラフにて、放射率の異なる部分の境界の温度を測定し、放射率が高温に測定される部分と、放射率が低温に測定される部分の遷移の傾きから、その測定系の空間的な分解能を推定する方法を説明する。言い換えれば、放射率の違いにより得られる赤外線サーモグラフにとっての疑似的な温度のステップレスポンスから、MTFを空間的なローパスフィルタとして、そのカットオフ空間周波数を推定し、微小領域の温度ピーク検出能力を把握するという手法である。電子機器設計者にとって図6の最も手近なジグ基板は、部品搭載前のガラスエポキシプリント配線板、いわゆるペアボードの一部である。ステップレスポンス測定には、赤外線サーモグラフで測定される現実の温度は問題にはならない。したがって、プリント配線板上の高放射率の部分（ソルダレジスト部）と低放射率の部分（はんだレバーなどが施されたランド部）それぞれの領域の放射率を知る必要はなく、単にそれぞれの領域の放射率の差を大きくすればよい。ただし、両領域の境界は直線で明瞭である必要がある。
3.3 具体的手順

まず、第一段階として、赤外線サーモグラフのMTFを図7のようなガウシャンフィルタと仮定し、さまざまなカットオフ空間周波数に対するステップレスポンスを求めておく。温度に相当する縦軸は低温で0、高温で1に正規化してある。なお、MTFをガウシャンフィルタで近似した理由は、画像の信号処理にはガウシャンフィルタがよく使用されることと、ガウシャンフィルタでの近似は、多少厳しく（温度ピーク検出能力が低め）に評価される方向に誤差が生じがちであること[5]を認識していれば、ピーク検出能力の推定に実用上不具合が生じないからである。

ここで、通常カットオフ空間周波数の単位はcycles/mmであるが、本稿では1画素の大きさと比較のしやすさから、カットオフ空間周波数半波長Lch[μm]で表すことになる。両者の関係は

\[L_{\text{ch}} = \frac{1000}{2f_c} \]

であれば、Lch=100μmとよぶことにする。

Lchと画素の大きさのイメージを図8に示す。以下に示すとおり、X[μm]レンズのカットオフ空間周波数半波長Lchは3X[μm]となり、1画素の大きさと比較して意外に長いことがわかる。

次に、第二段階として、図6の測定系を用いて、ジグ基板をホットプレートにて室温より50℃程度昇温し、絶縁部分であり放射率が高い（放射率0.85〜0.9程度）ソルダレジスト部と、金属製で放射率の低い（ある程度酸化していても放射率0.5程度以下である）パッド部の境界を赤外線サーモグラフにて測定し、図9に示すように正規化した温度分布を求める。

最終的に、第一段階で求めた理論値と、第二段階で求めた実測値を照合し、実測値と最も近い理論値であるカットオフ空間周波数半波長をこの赤外線サーモグラフのMTFの指標とする。

図10に、各レンズのカットオフ空間周波数半波長Lchを求めた例を示す。それぞれ2番目の計算値が実測と合っている。なお、この例の25μm、100μm、200μmのレンズは、図3の抵抗器の温度分布を測定するときに使用したものである。

3.4 微小領域の温度ピーク検出能力の確認

対象とする測定系のカットオフ空間周波数半波長Lchが求められると、任意の面積の高温部のピークがどの程度の正確さで捉えられているかとう
かは、図11に示す手順により、画像処理を用いて確認できる。図11のような100μm四方の内部が100℃で、それ以外の部分が0℃というような極端な場合を例に説明する。

元の平面上の温度分布を2次元離散フーリエ変換（2 Dimensional Discrete Fourier Transform : 2DDFT）により、空間周波数領域画像に変換し、

そこで上述の手順で測定されたカットオフ空間周波数\(f_c \)をもったガウシャンフィルタを積算し、2次元離散フーリエ逆変換（2 Dimensional Discrete Inverse Fourier Transform : 2DDIFT）により再度空間温度分布に戻す。元に戻した温度分布のピーク値が変換前の急峻な温度分布のピーク値である100℃と比較して、同じであればその測定系で100μm四方の内部のみが高温であるような狭い領域のピーク温度が捉えられることが確認できる。

図12は、図11で仮定した元の平面上の100℃部分のサイズを100μm四方、150μm四方、200μm四方と変化させ、カットオフ空間周波数半波長\(L_{ch}=75 \mu m \)のガウシャンフィルタを作用させた結果である。\(L_{ch}=75 \mu m \)のレンズでピークが捉えられるのは、高温部が\(L_{ch} \)の2倍の150μm四方より大きい必要があることがわかる。

前節の「\(X [\mu m] \)レンズのカットオフ空間周波数半波長\(L_{ch} = 3 X [\mu m] \)」であるとの結果と合わせると、\(X [\mu m] \)レンズでピークが捉えられるのは、高温部が\(6 X [\mu m] \)四方よりも広くなければならないということになる。

ただし、3.3節にも記したとおり、ガウシャンフィルタによる近似は、温度ピーク検出能力が低めに評価される方向に誤差が生じがちであるので、事前にそのピークが捉えられる正方形一辺の下限の長さは、これだけあれば確実というマージンを持った値である。実際には正方形の高温部の一方が\(4 X [\mu m] \)であればピークが捉えられることがある。

なお、次節の検証にも関連するが、図3の抵抗器の温度分布測定において、25μmレンズにて100μm程度の大きさのホットスポットのピーク温度が正確に測定されている理由は、マージンによる
伝熱 2015年7月 - 38 - J. HTSJ, Vol. 54, No. 228

もののというよりもむしろホットスポットに至る周囲の部分の温度が傾斜をもって徐々に上昇しているためである。

ピークに至るまでの温度勾配が緩やかであれば比較的低拡大率のレンズであってもピークは捉えやすい。詳細は割愛するが、図11の手順において、元の温度分布をステップ状ではなく傾斜を持ってピークに至るような形に仮定すればより低いカットオフ空間周波数のレンズ（すなわち、より拡大率の低いレンズ）でもピークが捉えられることが確認できる。

3.5 抵抗器の温度分布による検証

図13は図3の抵抗器の温度分布と、25 μm レンズにより測定された平面上の温度分布を真値として、図10に示した100 μm レンズのカットオフ空間周波数半波長Lch=300 μm、および、200 μm レンズのカットオフ空間周波数半波長Lch=600 μmのガウプフィルタを、図11の手順で作用させた場合の計算値を比較したものである。計算値はほぼ実測値と一致していることがわかる。

4.おわりに

冒頭にも記したとおり、赤外線サーモグラフィは便利な道具ゆえ電子機器設計現場にて多用されるようになった。

赤外線サーモグラフィを用いて微小部品の温度を測定する際には、X[μm] レンズではX[μm] 四方のホットスポットは決して捉えられないことを十分に認識し、メーカーなどよりピーク検出能力に対する情報が得られない場合には、本稿で示したような手法でピーク検出能力を大まかにでも把握しておくことをお勧めする。

ただし、MTF のガウブンフィルタによる近似は、ピーク検出能力が過小評価される傾向にあることは留意願いたい。

今後の課題として、放射率の違いを利用すると電子機器設計者が設計現場で手軽に行える便宜な手段は変えずに、より正確なピーク検出能力の把握が行なえる方法を検討したい。

本稿を執筆するにあたり、その機会を与えてくださった防衛大学校の中村元教授、さまざまな助言、ご指導をいただいた熊本大学大学院の富村寿夫教授、株式会社サーマルデザインラボ国巣尚樹氏に感謝いたします。

参考文献

赤外線サーモグラフィによる環境の可視化
Visualization of Environment by the Thermal Imaging

梅干野 智（放送大学）
Akira HOYANO (The Open University of Japan)
e-mail: hoyano@ouj.ac.jp

1. はじめに
衛星や航空機に搭載されたセンサーにより、可視域から、近赤外、そして熱赤外域までの電磁波をとらえられる多重分光熱画像が得られるようになった。また、赤外線放射カメラは、ハンディタイプで比較的安価に入手できるようになった。今日は非常に小型化し、見かけ上ビデオカメラとほとんど同じである。しかし、計測の原理などの基本的事項については、あまり知られていない。
空間的にも時間的にも広がりをもつ、地域・都市・建築に関する熱環境の実態を把握するには、空間情報が得られる赤外線イメージングは非常に有効であると言える。本稿では、赤外線計測上の注意点について、赤外線計測が専門ではない方々も理解していただけるように解説したい。

2. 環境計測と熱画像
2.1 赤外線放射カメラについて
日本では、1970年頃から、センサを液体窒素で冷やす冷却型の赤外線放射カメラが使用されるようになり、1990年代には、非冷却型の二次元アレイセンサが登場した。その結果、計測の機動性が増し、環境計測は飛躍的に発展した。当初は高額であったため普及は遅れたが、現在では安価なものでは数10万円まで価格は下がっている。

熱画像の画素数は、数100×100画素、そして画角は30°前後、瞬時視野角は0.2mrad程度である。一般の可視のカメラに比べると画質としては劣る。センサが検知する波長帯、赤外線領域の大気の窓と呼ばれる3~5μmと、8~14μm帯が多く用いられている。また、最近では、センサの応答速度も早くなり、航空機やヘリコプターへの搭載も可能になった。

2.2 熱画像についての理解
熱画像の特徴のひとつに、赤外線計測の専門的知識がなくても、比較的容易に利用できることがあげられる。特に環境問題に興味を持っておられる方には非常に有効な武器となる。しかし、その利用の過程においては、赤外線計測についての基礎知識が不十分なゆえに、熱画像の収録方法や熱画像の読み方で大きな誤りを犯してしまう場合もある。目的の情報を得るために、十分な検討が成されず、もう少し工夫をすることによって、有効な測定ができることにも良く出合う。

また、衛星や航空機で得られた、多重分光画像の画像処理においても、それぞれの画像についての知識を得ることによってさらに有益な解析も可能となる。
このようなことから、まず身近な赤外線放射カメラによる熱画像とはどのようなものかを理解しておきたい。具体例を示そう。

2.3 熱画像と写真の違い
図1は屋外で窓ガラスを収録した普通の写真（左）と赤外線放射カメラの熱画像（右）である。冬季の晴天日の少し薄暗くなった夕方、室内には蛍光灯が点灯されている。

この2つの画像を比較すると、
① ガラスは熱赤外線（波長8-14μm）は透過しない
② 可視域と同様に熱赤外域でもガラス面では反射がある。

と言うことを読み取ることができる。
①において、ガラスは可視光線は透過するが熱赤外線に対しては不透明体であるという、もっとも基本的な知識を知っている必要がある。熱画像では、室内の蛍光灯の存在はまったくわからない。
②において少し詳しくみてみよう。ガラス窓の対
向面である空と建物の壁面や外燈の反射が映っている例である。熱画像のガラスに映っている対向面の建物の壁面と地平線付近の空との放射温度には約6℃の差がみられる。ガラス面には表面温度分布はなく、表面温度の値は同じであっても、反射の影響で6℃にも及ぶ放射温度の差が生じている。これは、空と建物の壁面では放射温度には大きな差、ここでは80℃以上のあるためで、屋外での環境計測ではこのような例は少なくない。

このことについては後で詳しく述べるが、ガラス面は可視域そして赤外域ともに黒体ではないため、写真に映っている反射像と同じことが熱画像にもみられる。

ガラスの分光反射率は、8μm前後で分光反射率の値は大きくなる。このため、8-14μm帯では1.5～2程度の値をとる。光沢のある金属面と比べれば黒体に近いが、身の回りの材料の中では、反射率の値が大きい。

図1ではガラス面に対して45°前後の方向から収録しているが、さらに斜めから測定すると、通常よく経験するように可視域では急激にガラスの指向反射率の値が大きくなり、あたかも鏡のようになり、ガラス面の反射が急激に大きくなる。熱画像に占める反射成分の割合が多くなり、ガラスの表面温度を知ることは困難になる。

以上のことから、熱画像には、対象面が黒体でない限り、対象面からの反射とともに対向面からの反射が含まれる。熱画像の示す温度は一般には、放射温度であり、対象面の表面温度ではない。表面温度と放射温度との値の違いは、対象面の反射率が小さいほど、そして対象面の表面温度と対向面の表面温度の差が大きいほど顕著になる。

熱画像から対象面の反射率だけでは反射率補正、すなわち放射温度から表面温度は算出できないことが理解できる。

以上のことから、普通の写真を見ている場合は、黒体でない限り反射像が何らかの形で映っていることを視覚的に理解できるように、熱赤外線は目で見ることができないが、熱画像として空間分布がとらえられることによって、熱画像には反射成分が含まれていることも見抜くことができる。しかし、スポット測定の放射温度計の場合は、空間分布がわからないので反射成分を知ることは非常に難しく、大きな誤りを促す場合も少なくない。

2.4 熱画像から表面温度を求めるには

熱画像が示す温度は、厳密には表面温度でなく放射温度であり、このことはすでに述べた通りである。熱画像を用いて、表面温度分布を知るようするとときは、熱画像上のそれぞれの面について放射率補正を行わなければならず。

さらに、衛星や航空機リモートセンシングのように、対象とセンサとの距離が離れている場合には、その間にある大気の吸収、放射の影響を取り除く大気補正も必要となる。

衛星や航空機リモートセンシングによる熱画像
の場合には、地上対象物の放射率を定めることができ困難な場合が多いために放射率補正は行われず、放射温度の画像として一般には提供される。そのため、地上に放射率の値の小さい面、例えば水平な屋根のアルミ金属面（アルマイトのように酸化処理されていると放射率の値は大きくなる）では、空の見た温度が低いことから、式(1)からもわかるように空の反射（大気反射の反射）成分が卓越するため、アルミの反射温度は極端に小さい値をとる。

3. 赤外線放射カメラの測定原理

以上のことを理解していただくため、ここでは、放射の基礎理論を踏まえた上で、赤外線環境計測における計測上の原理について解説する。

放射に関するもっとも基本的なことは、『絶対零度以上の物体からは、その面の状態（放射率）と表面温度に見合った熱放射がなされている。その放射量は黒体の場合には絶対温度の4乗に比例する（ステファン・ボルツマンの法則）』ということである。また、放射の理論には、放射の最大波長と表面温度との関係を示すウィーンの変位則などがある。そして、環境計測に着目して、熱画像を正確に読もうとすると、もう一步踏み込んだ知識を必要とする。

具体的に挙げると次のようなになる。

1) 環境計測の対象となる面は黒体でなく、放射率の値が1より小さい。特に金属光沢面などは放射率の値は0.1以下となる。

2) そのため、熱画像の示す温度は、一般には表面温度ではなく、放射温度である。表面温度を求めるには放射率補正が必要である。

3) 赤外線放射カメラなどのセンサが感じる放射温度の波長は、一般には大気の窓と呼ばれる波長3〜5μmと、波長8〜14μmの波長帯である。すなわち、すべての波長帯の電磁波を感知しているわけではない。

4) さらに、対象の反射率の値は、波長によって異なる（分光特性）。また、面の方向によってもその値は異なる（指向特性）。

5) さらに、対象とするセンサとの距離が離れていると、大気補正も求められる。

3.1 赤外線放射カメラは何を測定しているか？

図2に赤外線放射カメラのセンサには、どのようなエネルギーが入射してくるのかを表した模式図を示す。また、同図を式で表したのが式(1)である。

\[E = (1 - \varepsilon)E_B(T_e) + (1 - \tau)E_B(T_a) \]

(1)

\(E_B(T) \): 線温度[T[K]]の黒体の放射エネルギー [W/m²]
\(T_e \): 対象面の面の温度 [K]
\(T_a \): 対象面の放射温度 [K]
\(\varepsilon \): 対象面の放射率 [-]
\(\tau \): 大気の透過率 [-]

図2 赤外線放射カメラに入射するエネルギー

図3 カメラの感度波長帯とセンサの感度

このようなエネルギーが入射してくるのかを表した模式図を示す。また、同図を式で表したのが式(1)である。

①対象面自身の放射に加えて、②周囲、主に対象面の対向面からの反射の放射面での反射、③対象面とカメラの間の大気の放射が含まれる。次に、①と②について詳しく考えてみよう。

3.2 対象面自身の放射

まずは、対象面自身の放射エネルギーがある（図2、式(1−①)）。これは、表面を黒体とみなせば、その表面温度に見合ったエネルギーである。しかし、現実には対象物は灰色体、そして、波長によ
って異なる放射率の値をもつ選択体であることと、センサには図3のように測定している放射の波長帯を考慮すると、センサが測定するエネルギーは、各波長の黒体放射エネルギーとその放射率の積に、各波長の波長帯で積分したものをなくなる（図3, 灰色部分）。ただし、センサには図3のように感度特性があるため、実際にセンサに感知されるエネルギーは、各波長の黒体放射エネルギーの積分である（図3, 灰色部分）。

3.3 周囲からの反射

物体に入射したエネルギーの反射率ρ, 吸収率α, 透過率τの和は1であり、黒体のように、赤外線計測で用いる波長帯の電磁波を透過しない対象を考えると、式(2)のように書ける。

\[ρ + α + τ = 1 \] (2)

式(3)は、対象物の放射による反射率を表す。

\[ρ + α = 1 \] (3)

3.3 周囲からの反射の反射

周囲からの反射の反射率ρ, 吸収率α, 透過率τの和は1であり、壁面などのように、赤外線放射カメラにより得られる放射温度分布から表面温度分布を算出する方法について解説する。

4. 全球熱画像収録システムとは？

4.1 全球熱画像収録システムとは？

通常の赤外線放射カメラは、視野が20〜30°程度と狭いため、観測者は対象物を意識的に選択して観測を行う必要がある。すなわち、放射カメラのファインダーを用いて、熱的に問題となる個所があるかどうかを目視により確認する必要があります。自らの周囲を取り巻く建物や地面の放射温度分布を全て観測することは現実的に困難である。一方、都市や建築空間の熱環境評価においては、空間を取り巻く周囲放射温度分布や表面温度分布が重要となる。そこで開発したのが、全球熱画像収録システムである。

全球熱画像収録システムは、図4に示すように、通常の赤外線放射カメラと、それを周囲に回転させる自動回転雲台によって構成される。赤外線放射カメラは一般的な仕様のものである。この赤外線放射カメラの視野角は、水平方向22°, 垂直方向29.4°で狭いが、本システムでは、放射カメラが取り付けられた自動回転雲台をPCにより自動制御し、パン・チルト方向に回転しつつ熱画像を撮影する。通常、水平方向に13枚、垂直方向に9枚の計117枚の熱画像が撮影され、撮影した熱画像を雲台の回転情報に従って合成することにより、全球のパノラマで表示された一枚の全球熱画像が作成される。全球熱画像は、目的に合わせて正反円筒図法等の様々な図法にて表現できる。

図5に建物により囲まれた中庭空間にて撮影した全球熱画像の一例を示す。この全球熱画像中でも、建物壁面などに天空や対向面からの反射の映り込みが確認できる。
図4 全球熱画像収録システム

図5 全球熱画像の一例（放射温度分布を表している。建物壁面への映り込みが見られる）
（拡大図をP.45に掲載）

全球熱画像で出力することの利点は、先に挙げたように観測地点を取り囲む全周囲の放射温度分布が画像として得られることに加え、その地点に立つ人が周囲の地物から受ける熱放射量を評価できることである。すなわち、全球の放射温度分布が得られると、熱放射環境の評価指標である平均放射温度（MRT；Mean Radiant Temperature）を算出できる。我々人体の熱的快適性には、環境側の要因として、気温、湿度、気流、そして熱放射が影響する。この中で、熱放射は、屋外において大きく人体の熱的快適性に影響を及ぼすため、MRTは熱環境評価の重要な指標である。すなわち、全球熱画像を用いることにより、空間の放射温度分布の把握と、熱的快適性の議論が両方同時にできることになる。

4.2 放射温度から表面温度を算出する方法

観測した放射温度から表面温度を算出するには、以下の3つの情報が必要となる。

(a) 対象面の対向面を含む周囲 4π の放射温度分布

(b) 周囲の建物形状などの 3 次元幾何情報

(c) 対象面の材料の分光・指向反射率・反射率

これらの情報があれば、熱画像を 3 次元化し、その 3 次元熱画像上において光線追跡（レイトレーシング）計算をすることにより、対向面からの反射成分を除去することが可能である。では、全球熱画像を用いる利点は何であろうか。

全球熱画像は計測地点の周囲 4π の放射温度分布を計測可能なため、(a)に挙げたように対象面に加え、その対向面の放射温度も同時に計測できる。すなわち、写真測量やレーザー測量により、3次元幾何情報を高い精度で求めることが可能であるが、熱画像と統合しようとすると、両者の計測系の違いにより、完全に一致しない場合がある。一方、全球熱画像は一種のパノラマ画像であることに着目すると、全球熱画像によるステレオ観測を行うことで、原理的にも、また実用的に
も、直接熱画像を3次元に立ち上げることができる。以上が全球熱画像に着目する理由である。

(c)の材料の分光・指向放射率に関しては、簡易測定方法により取得が可能である。分光・指向放射率に関しては、赤外線放射カメラの測定波長域8-14μmにおける双方向反射関数BRDF（Bidirectional Reflectance Distribution Function）を測定することにより求めることができる。BRDFは、ある入射方向からの光線に対する反射方向別の反射強度を示すものである。詳しくは文献[2]を参照されたい。

4.3 3次元熱画像の作成方法

4.3.1 作成方法の概要
光線追跡計算を行う対象空間の3次元熱画像の作成手法について述べる。全球熱画像収録システム（図4）は、先に述べたように13×9枚の熱画像を合成して全球パノラマの熱画像を作成する。まず、このような熱画像収録システムにより、カメラの設置高さを変えてステレオ計測を行う。次に、全球熱画像内における共通特徴点を探索したうえで、それを互いの全球熱画像間で対応付けすることにより、観測空間の3次元幾何モデルを作成することが可能となる。この手法を用いることで、3次元幾何モデルを作成するのに用いた熱画像をそのままテクスチャマッピングするため、合成誤差の少ない3次元熱画像が完成する。

上記の過程で問題となるのは、共通特徴点を探す段階における誤対応の問題である。誤対応が起こると、3次元熱画像の歪みの原因となる。共通点探索においては、その精度はステレオペア画像間における画像の質や歪みに左右されるため、用いる赤外線放射カメラのカメラ位置やレンズ焦点距離の相対関係を示すメタデータの課題を行った。

4.3.2 3次元熱画像の作成
ここでは、図6（左）に示すように、三角を10面で構成した高層建物に設けられた高架空間における作成結果を例に取り上げよう。中央の建物の壁面は、建物表面を半光沢の灰色タイルで覆われており、それ以外の建物はコンクリートの打放しとなっている。灰色タイルに覆われた建物を表面温度分布作成の対象とし、中庭3地点で全球熱画像収録システムを用いて撮影している。

まず、全球熱画像収録システムにより、対象空間全方位の熱画像を取得する。次に、重なりを持った熱画像を用いて窓枠から共通特徴点（ここでは約6000点）を抽出し、3次元幾何モデルを作成する。そして、作成した3次元幾何モデルと熱画像の共通特徴点を対応づけることで、幾何モデルに熱画像をテクスチャマッピングし、3次元熱画像を得ることができる（図6（右））。

4.4 3次元表面温度画像の作成方法
作成した3次元熱画像上で光線追跡計算を行うことで、図7に示す順序に沿って表面温度を求めることができる。

① 観測点の座標から対象ピクセルの3次元座標に光線を飛ばす。
② 到達した対象面の法線ベクトルを中心に、入射ベクトルに回転行列を乗じる。
③ 対向面のピクセルを抽出し、その点の輝度に基づく放射を対象ピクセルに回帰させる。
④ 対象ピクセルの表面材料の指向放射率及びBRDFを用いて、対象ピクセルで反射される放射輝度を算出する。
⑤ 算出した反射成分の放射輝度を観測輝度から減じることで、対象ピクセルからの放射輝度を算出する。

反射ベクトルが、上方向のベクトルで、且つどの面にも交差しないときには、対向面を天空として、天空の放射輝度を求め、同様の計算を行う。このとき、天空の放射輝度は、天顶部分と地平線近くとは大きく異なるため、天頂角方向の分布を算出する。都市空間において放射カメラを用いて建物を撮影する上では、ほとんどの場合、天空の映り込みが見られるため、このプロセスは重要である。

なお、この対象空間の場合、対象とした面の対向面が主にコンクリート壁面と天空であるため、反射の光線追跡回数は1回で十分精度が確保される。対象面となる壁面のタイルの指向放射率及びBRDFについては、同種の材料を用いて算出した結果を使用した。なお、本手法について詳しく知りたい場合は、文献[3]を参照されたい。

4.5 表面温度の算出結果
観測時の気温26℃という条件の下で表面温度を算出した結果を図8に示す。対向面からの反射によって当初図8（左）のように不均一かつ不連続な温度分布を示した対象面から、対向面および天空からの映り込みが取り除かれ、図8（右）に
図5 全球熱画像（放射温度分布を表わしている。建物壁面への映り込みが見られる）

図8 放射温度画像から表面温度画像の作成結果（3次元CAD上での表示）

図9 放射温度画像から表面温度画像の作成結果
示すように、ほぼ均一な表面温度分布が得られていることが分かる。計測位置を変えて撮影した図9の結果も同様である。対象面上部における天空の映り込みにより17℃を示していた部分が、反射除去後は22.5℃という値である。また、対向面の映り込みによって30.8℃を示していた壁部分では、反射除去後は22.6℃となっている。

南北2地点の異なる観測点から撮影した熱画像を用いて3次元熱画像を作成しても、同様の結果が得られるとの確認をした。その結果、図10に示すように、映り込みの様相によって、表面温度分布に0.3℃程度の差は見られるが、得られた表面温度分布の標準偏差から考えると80～85%の信頼区間内のばらつきということができ、十分な精度が確保されている。以上より、3方向から別に作成した3次元熱画像から算出した表面温度画像が互いに近い値を示していることから、本手法の有効性が確認できる。

5. おわりに

都市・建築環境の実態把握において、熱画像は有効であることを述べるとともに、環境計測上の注意点として放射率補正に集点をあけて議論した。
熱画像から伝熱現象を議論しようとするとき、表面温度の情報が必要な場合が多い。熱画像から得られる放射温度から表面温度を求めようすると、放射率補正と大気補正を行わなければならない。放射率補正には、対象面の放射率の値だけでなく、図2をみてもわかるように、対向面の放射温度も必要になる。ここでは、球面熱画像を用いることによって、放射温度から表面温度を求める方法を実例を示しながら紹介した。
都市・建築を対象とした環境計測では、対象面は黒体ではなく、灰色体や選択性があるため、表面温度を求めるためには、対象面のセンサの感度を波長帯における分光反射率の値が必要となるが、その値は平滑な金属面の分光反射率のように容易に得られず、対象面の存在する環境においても価は変化するし、現地で測定するのは困難な場合も多い。このように、環境計測においては、計測上困難なことが多いが、熱画像の有効性は間違いなく、それゆえに、計測上の原理・原則を十分ふまえた上で計測や解析に取り組む必要がある。

引用文献
1. はじめに

ここ数年, 赤外線サーモグラフィ装置 (InfraRed Thermograph, 以下 IRT と記す)の低価格化・小型軽量化が急激に進展しており, 様々な分野で IRT の普及が進んでいる. さらに, 一昔前と比べて性能が大きく向上しており (表 1), 伝熱分野の研究・開発においても, 面の温度分布を非接触で測定できる温度計として利用が進みつつある.

ただし, IRT は温度を直接測定していないのでなく, 赤外線の放射強度を測定し, それを温度に変換しているため, 後述のように様々な誤差要因が存在する. つまり, 正しい温度を測定するには, これらの誤差要因を正確に把握し, 誤差を除去・抑制するか, あるいは補正することが必要になる.

そこで本稿では, どうすれば正しい温度を測定できるか? の情報を提供することを目的とし, まず, IRT の誤差要因の整理を試みた. また, IRT を利用した対流熱伝達測定について, これまで筆者が行ってきた研究を紹介しながら, IRT を使用するメリットや, 正確に測定する上での注意点について述べたい.

表 1 IRT の仕様の変化 (一例)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>高解像型 高速度型 量子型 熱型</td>
<td></td>
</tr>
<tr>
<td>走査方法</td>
<td></td>
</tr>
<tr>
<td>機械的走査 電子走査</td>
<td></td>
</tr>
<tr>
<td>フレーム速度 (frames/s)</td>
<td>0.2 20〜30 〜1000 (常温) 〜60</td>
</tr>
<tr>
<td>画素数</td>
<td>300×480 150×180 〜1280 ×1024 〜640 ×512</td>
</tr>
<tr>
<td>素子冷却</td>
<td>液体窒素冷却 スターリング冷却 非冷却</td>
</tr>
<tr>
<td>溫度分解能</td>
<td>0.1 K 0.02 K 0.05 K</td>
</tr>
</tbody>
</table>

2. 誤差要因の整理

2.1 外的要因

IRT の誤差要因は, 大きく外的要因（赤外線が IRT 本体に入射するまでの誤差要因）と内的要因（IRT 内部の誤差要因）に分けられる. ここでは外的要因について整理する.

測定面周囲を黑体とみなすことができ, また, 大気に存在する塵や水滴などによる赤外線の散乱を無視できれば, IRT に入射する赤外線 (IRT 検出波長帯における放射強度) は, 一般に次式で表すことができる (図 1)

\[
W_\lambda(x, y) = \varepsilon_\lambda(x, y) B_\lambda(T(x, y)) + (1-\varepsilon_\lambda(x, y)) \tau_\lambda B_\lambda(T_{amb}(x, y)) + (1-\tau_\lambda) B_\lambda(T_{air})
\]

ここで, \(x, y\) は IRT の赤外線検出素子列に対応した座標であり, \(W_\lambda(x, y)\) は IRT に入射する赤外線の放射強度分布, \(\varepsilon_\lambda(x, y)\) は測定面の放射率分布, \(\tau_\lambda\) は大気の透過率, \(B_\lambda(T)\) は温度 \(T\) の黒体からの放射強度, \(T_{amb}(x, y)\) は測定面の温度分布, \(T_{air}\) は大気の温度である. 添字の \(\lambda\) は, IRT 検出波長帯における値を示している. 式 (1)の右辺第 1 項は測定面からの放射を, 第 2 項は周囲からの放射の測定面での反射を, 第 3 項は大気からの放射を示している.

ここで, 測定面と IRT との距離が近ければ, 大
実験室での測定を想定すれば、通常は測定面とIRTの距離が近いため、多くは式(2)を用いてIRTに入射する放射強度を評価することができる。この場合、ελ(x,y)とTamb(x,y)が主な誤差要因となる(窓材を介した測定では、窓材での吸収、反射、放射も誤差要因となる)。この場合、可視画像では確認できない様々な反射像が熱画像に写り込むことがある。このような状態では正確な温度測定が難しいが、周囲の放射率が高く多重反射が起こらない状態であるなら、例えば、測定面を一旦Twとελが既知の金属板に置き換えるなどして熱画像U(x,y)を取得し、後述の式(3)からTamb(x,y)を推定することが原理的には可能である（実際には拡散反射の影響もあり、正確な評価は簡単ではない）。一旦Tamb(x,y)が評価できれば、Tamb一様の場合と同様に測定面温度T(x,y)を計算することができる。

2.2 内的要因
次に、内の要因（IRT内部の誤差要因）について整理する。IRTに入射した赤外線の放射強度分布Wλ(x,y)は、光学系（レンズや窓）を通したもので、測定面温度Tamb(x,y)と周囲温度との差に大きく影響される。ただし、測定面温度を周囲温度で近似できれば、放射率の影響はほとんど無くなる。つまり、測定面に黒色塗料を塗布するなどして放射率を高めれば、外的要因を簡単抑えることができる。

一方、周囲の影響を無視できない場合には、放射率分布ελ(x,y)と共に、周囲温度分布Tamb(x,y)の影響を評価しなくてはならない。最も簡単な方法が、Tamb(x,y)を一様にすることである。そうすれば、Tambは熱電対等で測定できるので、もし測定温度が著しく変動することがない限り、ελ(x,y)を無視して式(2)を用いて、放射強度Wλ(x,y)のみが光学系を通して検出されると考えて良い。この時、光を放射する物体の放射強度が一定であるか、かつ、窓材に入射した放射強度とIRTの出力の関係が線形であるならば（つまり、Wλ(x,y)とU(x,y)の関係が線形であれば）、IRTの出力U(x,y)は、式(2)を基に次式で表される。

U(x,y) = ελ(x,y)B[T(x,y)]
+ (1−ελ(x,y))B[Tamb(x,y)] ········ (3)

ここで、f(T)は黑体温度測定時のIRT出力であり、黒体炉を用いた校正によって求められる。
冷却型IRTの場合、内的要因による誤差として、WλとUの非線形性、およびf(T)の経年変化が挙げられる。WλとUの非線形性は、主に光学系の温度変化によって生じる（光学系の温度が上昇すると、光学系からの放射が強くなるため）、実際に、黒体炉を用いた校正結果を取ると、室温が高いほ
と \(\alpha(T) \) の値が高くなる傾向が確認できる。つまり、高精度の測定が必要な場合には、光学系の温度変化にも注意を払う必要がある。また、IRT のレンズ表面の汚れが、\(\alpha(T) \) の変化の要因になる。

これ以外にも、特に微小ホットスポットの温度を測定する場合には、光学系の解像度（MTF）にも注意を払う必要がある。一般に、正確な温度を測定するには \(f_{\text{TM}} \) を \(3 \sim 5 \)ピクセル程度の解像度が必要であり\([2, 3]\)，それより解像度が低い場合には、ホットスポットの温度を低く推定してしまう。また、素子出力のノイズや、各素子の出力のばらつきも誤差要因となる（通常、出力のばらつきはNUC (Non-Uniformity Correction) 処理により低減されている）。ランダムノイズやばらつき誤差は、時間的・空間的平均化により低減可能である。

ちなみに、IRT では出力が温度分布として表示される場合が多いが、これは、IRT 出力 \(U(x, y) \) および \(\alpha \) と周囲温度 \(T_{\text{amb}} \) から、式 (3) を基に \(T_{\text{amb}}(x, y) \) を求めた結果である。当然、\(\alpha \) や \(T_{\text{amb}} \) の値が正しくない場合や、これらの値に分布がある場合には、表示される温度分布は実際の温度とは一致しない。

次に、低価格化・小型軽量化が急速に進んでいる非冷却型 IRT について考えると、IRT 内部構造のイメージを図 3(b) に示す。冷却器がない、コールドシールドが存在しないことで、冷却器と主な違いは、冷却器が存在しない。つまり、測定面からの放射だけでなく、筐体内部からの放射も赤外線検出素子で検知される。この場合、冷却型 IRT の誤差要因に加え、筐体内部における放射も大きな誤差要因となる。また、赤外線検出素子自身的温度変化により出力特性が変化する。ベルチェ素子で検出素子を冷却して温度を安定化させている製品も多いが、その場合であっても、筐体内部からの放射は除去できない。つまり、非冷却型 IRT の場合、筐体内部における放射をいかに補正するかが極めて重要になる。

この問題に対処するため、メカニカルシャッターを搭載した製品が開発され\([4]\)，広く普及している。この製品では、光学系の前面などに放射率が高くかつ温度が一様とみなせるシャッターが設置されており、シャッターが開いた瞬間に、シャッター温度に対応した出力が得られるように補正処理が行われている。いわば、シャッターに擬似的に黒体温度校正しているイメージである。すなわち、操作で各素子の出力のばらつきも同時に補正される。ただ、光学系温度、筐体温度、素子温度が変化すると補正量も変化するため、測定中も随時シャッター補正を行う必要がある。

最近では、メカニカルシャッターを用いないで補正処理を行う製品も開発されている\([5]\)。この製品では、あらかじめ筐体内の各温度に対応した補正テーブルを保持しており、筐体内の温度変化に対応した補正を自動的に行っている。

いずれにせよ、非冷却型 IRT を温度計として使用する場合には、筐体内部の温度変化に伴う出力の変化をいかに正確に補正できるかが重要なポイントとなる。

3. 対流熱伝達測定への応用

3.1 円柱周りの熱伝達測定

ここで、対流熱伝達の測定事例として、流れに垂直な円柱からの熱伝達測定\([6, 7]\)について紹介する。円柱は、各種伝熱機器の構造体やピンフィンなどの伝熱促進体として広く利用されており、形状がシンプルで実験が容易なことから、古くから非常に多くの実験が行われてきた。従来は、熱電対等を用いた点測定が多かったが、IRT を用いることによって、これまで明らかにできなかった面の複雑な熱伝達分布を容易に把握できるようになった。

図 4 に、風洞実験装置及び加熱円柱模型を示す。円柱模型の一部は厚さ \(10 \mu \text{m} \) のステンレス箔で構成されており、その表面には赤外線の放射率を高めるため黑色塗料が塗布されている。この円柱を風洞内に設置し、ステンレス箔を通電加熱した時の温度分布を IRT で測定した。

なお、下方からの測定（図 4(a)）では、最初は風洞底面に窓材を設置していたが、窓材表面
IRT 自身の反射像が写り込み, 当時はこれに対処する方法がわからなかったため, 結局窓材を設置せずに測定した. 結果論ではあるが, 窓材を設置すると, 窓材自身的温度変化などにおい注意を払う必要が生じるため, 可能であれば窓材は使用しない方が望ましい.

また, 測定面の反射率や周囲温度を評価する必要があるが, ここでは, 熱電対温度と IRT の温度が等しくなるように反射率を決定した. また, 周囲温度には風洞の主流温度を用いた（厳密には風洞内壁温度を用いるべきであるが, 主流温度との差が小さいこと, また, 測定前に色黒塗料が塗布されており周囲の影響を受けにくいことから, この場合は主流温度を用いた）.

得られた熱画像の一例を図 5 に示す. これは円柱の測方から撮影したもので, 空気は図の上から下に向かって流れている. 円柱の前面では低温の空気が流入するため温度が低下するが, 円柱前面に沿って境界層が発達して温度が次第に上昇する. また, 側面で流れがはく離すると, その直後では急激に温度が上昇している. なお, 円柱前面から側面にかけては円柱軸方向に温度が一様であるが, 背面では非一様になり, IRT の動画を観ると, 時間とともに複雑に変動する様子が観測された. 熱電対などの点計測ではこうした現象を捉えるのが困難であるが, IRT を用いると, 熱伝達の非一様性・非定常性を容易に把握することができる.

ちなみに, 図 5 の熱画像は, 放射率 ε と周囲温度 T_{amb} を IRT に手入力して温度表示した結果である. この例では, 測定面の反射率が高く T_{amb} が非一様の影響は小さいが, 放射率に指向性があるため, 角度の大きい円柱前面及び背面では実際の温度よりも低く表示されている. IRT の温度表示機能は便利であるが, 放射率 ε と周囲温度 T_{amb} が正しいかどうか, 十分に注意を払う必要がある.

熱伝達率を算出する際には, IRT の出力 $U(x,y)$ を基に, 式 (3) から $T_w(x,y)$ を算出し, それを円柱表面の座標 $T_w(\phi, z)$ に変換した. その後, 次式を用いて熱伝達率 $h(\phi, z)$ を算出した（ϕ は円柱前方岐点からの角度, z は円柱軸方向の座標である）.

$$h(\phi, z) = \frac{q_{in} - q_L - T_0}{T_0}$$ \hspace{1cm} (4)

ここで, q_{in} は通電加熱熱流束, q_L は熱伝導や熱反射による損失であり, T_0 は主流温度である.

本実験で得られた円流周りの熱伝達分布（軸方向平均）を図 6 に示す. ここでは, ヌッセル数をレイノルズ数の平方根で除した無次元数 $Nu/Re^{0.5}$ で表している. 熱電対等による接触式の測定では, 接触による温度場の乱れやリード線への熱損失が避けられず, レイノルズ数が低くなると精度不良測定が難しくなる, そのため, 従来は
Re < 10^3 では熱伝達分布の実測データがほとんど存在しなかった。それに対し、IRT の場合は非接触で測定できるため、低レイノルズ数においても比較的容易に熱伝達分布を求めることができる。

図 7 には、円柱背面（φ = 180°）のヌッセルト数 Nu の Re 数による変化を示す。円柱前方端点（φ = 0°）では、Re 数によらずほぼ Nu/Re ≈ 1 の一定値になるが、円柱背面では、後流の流れ場の変化に伴い、各 Re 数範囲においてそれぞれ特徴的な変化を示す[7]。こうした変化は、IRT で低レイノルズ数の局所熱伝達率を評価できるようになって初めて明らかにすることがでた。

3.2 乱流熱伝達の時間・空間変動測定

次に、乱流に伴う熱伝達の時間・空間的な変容特性を測定した事例[8, 9]について紹介する。流れが乱流になると、壁面近傍に形成される乱流構造の挙動により、熱伝達（壁面-流体間の熱移動）が高速かつ複雑に変動する。この様相を点検測で評価するのは困難であるが、IRT では面の温度分布を非接触で測定できるので、近年の IRT の高性能化も相まって、今では乱流に伴う熱伝達変動を比較的容易に測定できるようになっている。

熱伝達が非定常になると、固体壁-流体間に非定常な熱連成現象（固体壁の温度変動と流体の温度変動が相互に影響を及ぼす現象）が現れ、通常の壁温一定と仮定した解析では伝熱量を正確に予測できなくなる[10]。また、壁温変動が顕著になると、固体壁内の熱応力変動が繰り返されて、高サイクル熱疲労を引き起こす可能性もある[11]。従って、機器の熱設計の精度および信頼性向上のためには、熱伝達の非定常性に関する知見が必要になる。

図 8 に実験装置を示す。低速風洞内に長さ 840 mm の平板が設置されており、その後方に加熱平板模型（アクリル製、厚さ 6 mm、図 8(b), (c)) が一段差なく接続されている。加熱平板模型のアクリル板は一部がくり抜かれており（図 8(c)のremoved sections）、くり抜き部を覆うように、厚さ 2 μm のチタン箔が平板上面から下面の電極にかけて弛みないように接着されている。チタン箔は熱容量が非常に小さいため、通電加熱すると、外部空気への熱伝達変動によって温度が時間的・空間的に高速に変動する。これを IRT で測定して乱流熱伝達の時間・空間的な変動を調べた。

なお、高速な変動を捉えるには、伝熱面の熱容量を極力抑える必要がある。そのため、チタン箔には白色塗料を塗布せず金属面のままとした。この場合、測定面の放射率が低いため周囲からの赤外線が多重反射しやすくなるが、これを抑制する
ため、風洞内壁には黒色塗料を塗布して周囲の放射率を高めた（式(3)で近似できる状況にした）。特に、IRT の鏡面反射の位置となる風洞底面（図 9 参照）は温度が一定かつ反射率を高めた（式(3)で近似できる状況にした）。もし何らかの理由で非一様が存在すれば、それが熱画像に写り込むからである）。また、IRT 自身の反射像が写り込まないようにならないように、図 9 のように測定面に対して 20°程度傾けて設置した。

さらに、(式(3)から温度 Tw(x,y) を評価するには、測定面の放射率 ελ を正確に評価する必要がある。ここでは、測定面と同一のチタン箔を加熱銅板に密着させた模型（図 10）を使用した。銅板には校正された熱電対が設置されており、その測定温度 (≈ Tw) と IRT の出力 U、および周囲温度 Tamb を式(3)に代入して放射率 ελ を求めた。その結果、チタン箔の放射率は ελ = 0.20 と評価された（IRT 検知波長帯は 3～5 μm）。

図 11 に、IRT で測定した伝熱面の瞬時温度分布 Tw(x,z,t=0) およびスパン方向 (z 方向) 温度分布の時間履歴 Tc(x,z,t) を示す。いずれも、IRT 出力の時系列データ U(x,y,t) を基に、式(3)から Tw(x,y,t) を算出し、それを平板上の座標に変換したものである。層流（図 11(a)）の場合、実際には温度分布はほぼ一様であるが、IRT のノイズを鈍化させるために温度レングを拡大して表示している。

瞬時・局所の熱伝達率 h(x,z,t) は、測定面の二次元熱伝導方程式から導出した式(5)により算出できる。

\[
h(x,z,t) = \frac{q_L + q_L(x,z,t) - q_L(x,z,t) - q_L(x,z,t)}{T_w(x,z,t) - T_0}
\]

(5)

上式は式(4)と対応しているが、熱損失 qL の他に、
特集：赤外線サーモグラフィによる熱計測

チタン箔の熱容量による時間遅れ q_I およびチタン箔内の熱伝導による熱拡散 q_D を考慮している。IRT で測定した温度分布は、箔の熱容量・熱伝導の影響により、実際の熱移動現象と比べて時間的・空間的に減衰するが、式(5)に従って熱伝達率を計算（逆解析）することで、時間的・空間的な減衰を復元することができる。

ここで、q_I および q_D 中の微分項は、次のように差分化して計算した。

$$\frac{\partial T_n(x,z,t)}{\partial t} \approx \frac{T_n(x,z,t+\Delta t) - T_n(x,z,t-\Delta t)}{2\Delta t} \quad \cdots (6)$$

$$\frac{\partial^2 T_n(x,z,t)}{\partial x^2} \approx \frac{T_n(x-\Delta x,z,t) - 2T_n(x,z,t) + T_n(x+\Delta x,z,t)}{(\Delta x)^2} \quad \cdots (7)$$

Δt は IRT のフレーム間隔、Δx は IRT の 1 度素に相当する距離である。なお、測定された温度 T_n には必ずノイズが含まれるため、例えば小さなノイズであっても、時間刻み Δt や空間刻み Δx が小さくなると、微分項の算出に大きな影響を及ぼす。そのため、こうした逆解析を行う際には、ノイズの影響をいかに低減するかが重要になる。ここでは、測定温度 $T_n(x,z,t)$ にローパス・フィルター（フーリエ空間におけるシャープ・カットオフ・フィルター）を x 方向、z 方向、t 方向にそれぞれ独立に適用し、高周波数・高空間波数のノイズを除去した。

フィルター適用後の温度分布を図 12 に示す。層流の温度分布（図 12(a)）をみると、図 11(a) と比べて時間的・空間的に細かなノイズが低減されていることがわかる。また、乱流の温度分布（図 12(b)）をみると、細かなノイズのみ低減されており、乱流に起因した比較的周波数の構造はほとんど変化していないことがわかる。

図 13 に、式(5)から求めた熱伝達率分布（図 12(b)に対応）を示す。逆解析の結果、乱流渦構造に伴う高速な熱移動現象が明確に復元されていることがわかる。本測定結果を統計解析したところ、伝達変動の大きさや空間的な構造（スパン方向の平均的な空間波長）は、乱流の直接数値計算の結果と定量的に良く一致した[9]。また、瞬時分布のパターンも定性的に良く一致した[12]。すなわち、最近の高性能 IRT を利用すれば、乱流に伴う高速かつ複雑な熱伝達変動であっても、定量的に測定することが可能となっている。
4. おわりに
「赤外線サーモグラフィって本当に正しい温度を測定できるのだろうか？」と不安に思うことも多かったが、これまでの経験では、誤差要因を正確に把握し、それを除去・抑制、もしくは補正することさえできれば、十分に信頼に足る温度計として活用できると考えている。

IRTを使用すると、二次元（時間を含めると三次元）の温度分布を非接触で測定できるため、そのメリットを活かして、これまでに無い新たな計測法の開発も期待できる。今後、IRTが高機能な温度計として様々な分野で活用されることを願っている。

最後に、これまでIRTを用いた測定にご協力いただいた防衛大学校機械工学科熱工学研究室の皆様、および卒業生の皆様、並びにサポートしていただいた皆様に謝意を表します。

参考文献

瞬時分布

瞬時分布

瞬時分布
1. はじめに
日本伝熱学会主催「伝熱工学の基礎」が 2015年6月27日（金）東京理科大学森戸記念館で開催された。79名の受講者が参加し、参加者の評判もおおむね好評だった。本稿では、その開催経緯と講習会の状況を報告する。

2. 開催経緯
本講習会の企画は長い歴史がある。著者が伝熱学会企画部会長を拝命していたとき（48、49期、2009、2010年度）、伝熱学会の財政状況は必ずしも健全とはいえなかった。そこで、財政の健全化と伝熱工学の企業への普及を兼ねた講習会が検討された。しかし、当時は企業の景気も芳しくなく、講習会を開催しても受講者が集まらない懸念があり、企画部会として継続審議するのみで具体化には至らなかった。

その後伝熱学会の中長期検討委員会（藤岡委員長、53期から継続中）でも、本会と企業との連携強化が検討され、講習会と企業賛助会員の強化が議論された。委員会では企業で熱プロセスを担当している技術者に対して、伝熱工学の入門講習会を開催することになり、筆者が講師を担当することになった。また、この講習会を企業サービスの一環として位置づけ、賛助会員や特別賛助会員の強化も行うこととなった。

3. 講習会の準備
中長期委員会と53期理事会の承認を得て、本講習会を準備することとなった。講習会は企業等で熱プロセスに携わり、伝熱工学を学んだことのない方でも理解できる内容とし、すでに伝熱工学を修得した方も伝熱工学の勘所がわかるように努めた。

講習会には、重要なところを自分で書き込むカラー刷りノート（図1）、JSMEテキストシリーズ「演習伝熱工学」、熱物性計算ソフトを教材として配布することとし、講習会が終了した後に受講者間で情報交換ができる交流会もセットした。

![図1 重要箇所を講義中に記入するノートの一例](https://www.youtube.com/watch?v=FRGcpYndwj8&feature=youtu.be)

賛助会員および特別賛助会員企業へのサービスとして、これらの会員企業に所属する参加者の参加料は割引して、企業会員の強化に資することとした。

4. 講習会開催状況
講習会は79名の参加者で、図2に示すように、講習会の会場はほぼ満席状態であった。講習会は13:30から開始し、17:30までの長時間にもかかわらず、多くの受講者に熱心に聞いていただいた。岡崎53期会長にご出席いただき、まじめにノートに書き込むなど、熱心に受講していただいた。
その模様は、下記のURLにも掲載されている。
http://www.htsj.or.jp/lecture/20150710lecture/firstlecture.html

図2 ほぼ満席状態での講習会実施状況

参加者は、ほとんどが20〜40歳の企業エンジニアであったが、職種も技術専門職から営業職まで多様であった。講習会は、88%の参加者に良いまたは非常に良いとの総合評価をいただくなど、まずまずの反応であった。その詳細は下記のURLに記載されている。
http://www.htsj.or.jp/lecture/20150710lecture/questionnaire.html

ただし、講義時間が短く、最後の部分はかなりのスピードで説明したので、講義時間を延長してほしいという要望があった。説明不足の部分に関しては、後日その部分の講義ノートを配布した。

技術交流会は、多様な企業参加者が名刺交換して、情報交換するなど盛況であった。しかし、交流会はかなり豪華な食事だったにもかかわらず、伝熱シンポジウムと異なり、食事をする時間が十分でなかったようだ。若手参加者には、料理を持ち帰ってもらった。

多くの受講者に参加いただいたので、ウェブCMの製作代を差し引いても若干の収益が得られた。この収益は、学会の財政健全化と活動の活性化に貢献できるものと考える。

5. 今後の課題と予定
前記のように講習会はおおむね好評であったが、伝熱のすべてを午後4時間で網羅するにはかなり
な無理があることが判明した。講師はアドリブで色々な話（雑談）をするので、それも時間不足を
増長させた嫌いがある。次回からは、講義時間と内容を若干見直す予定である。

受講者にはパソコンを持ち込みいただき、事前に配布したソフトを実践的に使用することとした。しかし、企業の参加者はパソコンを社外に持ち出すことが難しいことが判明した。会場が狭いこともあり、ノートをとりながらパソコンを操作するには困難を伴った。次回からは、パソコンなしで配布ソフトの使用方法を説明する予定である。

技術交流会は盛況だったが、講義時間が若干延びたこともあり、時間が足りなかった。次回は交流会の時間を十分にする予定である。

本会の成功を受けて、次回は2015年7月10日に開催予定である。この日程は、日本機械学会の“伝熱工学資料(改訂第5版)"の内容を教材にした熱設計の基礎と応用”講習会とも連携できるように設定された。

本稿執筆時点で、参加者の募集状況は好調である。しかし、本講習会が企業の社員教育の導入として定着するためにはまだ時間がかかると考えている。本講習会を通じた伝熱学会の社会貢献がどのくらい進展するのかは今後の課題である。

6. 謝辞
本講習会実施にあたり、多くの方の協力をいただいた。本講習会の企画段階からご支援いただいた、秋吉亮51期副会長(IHI)、当時の財務担当理事長芹澤良洋、現54期副会長(新日鐵住金)、藤岡慎子中長期検討委員会委員長(ファンクショナルフルイド)には本会の枠組みを作っていただき、その後もご支援いただいた。工藤正樹先生(都立産業技術高専)、小宮亜希子委員(東北大)にはホームページと会場の手配や運営に関して多大な協力をいただいた。当研究室の小林ひとみ様と黒井弘子様には、受講者の受付や資料の作成等で協力をいただいた。伝熱学会事務局には受講料の受付等に協力いただいた。このほか、受講者を勧誘いただいた本会理事等の皆様に御礼申し上げる。
博物館めぐり

三池炭鉱跡と大牟田市石炭産業科学館
Miike Coal Mines: Omuta Coal Industry and Science Museum

吉田 英生（京都大学）
Hideo YOSHIDA (Kyoto University)
E-mail: sakura@hideoyoshida.com

1. はじめに
5月4日に、内閣官房 産業遺産の世界遺産登録推進室（http://www.cas.go.jp/jp/sangyousekaisan）から、
今般、我が国から推薦を行っている「明治日本の産業革命遺産 九州・山口と関連地域」について、ユネスコ世界遺産委員会の諮問機関である
ICOMOS（イコモス）による勧告がユネスコ世界遺産センターより通知されました。
と発表された。そこで、福岡での伝熱シンポジウムが終わった翌日の6月6日、博多からJR鹿児島線の快速で1時間あまりの大牟田に足を運び、三池炭鉱関連の遺産見学をした。

2. 宮原坑と万田坑
図1の三池炭鉱関連遺跡の地図からわかるように、見学スポットはJR鹿児島線をはさんで福岡県大牟田市から熊本県荒尾市にかけて広く分布している。当日は幸い天気に恵まれたので、大牟田駅東口にある大牟田観光プラザでレンタサイクルを
最初に、三池炭鉱の全容を把握するために図2と図3を見ていただきたい。図2に示すように三池炭田で主に採掘の対象になったのは、本層、上層、第二上層とよばれた3枚の石炭層である。各層の厚さは2〜6mほどで、有明海に向かって南西方向におよそ5度の角度で傾斜している。このことは図3で高取山の少し北側を中心として、石炭層の等深線が扇状に広がっていることからも明確に確認できる。このため歴史的には浅い方から深い方に徐々に坑口が作られ、最終的には坑道が有明海の下にまで延びた。

2.1 宮原坑
宮原坑の第一竪坑は、明治28（1895）年着工、明治30（1897）年に深さ141mで着炭、明治31（1898）年には、排水・揚炭のための坑外諸施設が完成し、出炭を開始した。第二竪坑は、明治32（1899）年着工、明治33（1900）年に深さ160mで着炭、明治34（1901）年には設備が完成した。かつて主役として活躍した蒸気機関とデビーポンプがあった建物は北側の壁だけが残るが、巻揚機のある建物は機械とともに残っている（図4）。巻揚機は炭車あるいは鉱夫が乗ったケージを上下に駆動するものであるが、上端（地上）と下端（地下坑道）での位置合わせを、昔は鐘・ベルなど音の信号で行っていたそうだ。巻上機の動力は、当初は蒸気機関であったが後に電動機になった。

その後、新たに四山坑、宮浦大斜坑からの採炭に中心が移り、それまでの主力坑であった大浦坑、勝立坑、七浦坑とともに、宮原坑も昭和6（1931）年に閉坑となる。
2.2 万田坑

宮原坑から万田坑は直線距離（鉄道跡）では近くみえるが、実際に自転車で走ってみると道は複雑かつ三角形の2辺を行うような遠回りで、手元に簡単な地図はあったものの実際には道案内も少なく、地元の方に途中数回たずねてようやく到着した。入場無料の宮原坑とは異なり410円の入場料が必要であるが、三池炭鉱を理解するにはやはり万田坑見学が必須であろう。入場券を購入する万田坑ステーションにはコンパクトながらも貴重な映像、写真、模型などの展示がある。蛇足ながら、売店にくまモンがいることで荒尾市が熊本県であること気づく。

万田坑の第一竪坑は明治30（1897）年着工、明治32（1899）年に完成、深さ271mであり、明治35（1902）年に着炭し出炭を開始した。これは宮原坑の4年後である。第二竪坑は明治41（1908）年に完成、深さは264mである。万田坑では宮原坑より20年長く採炭し、昭和26（1951）年に閉坑した。広大な敷地には多数の遺産がある（図5、図6）。

万田坑の概略構造は図7に示すようで、図8が坑道入口でケージが見える。図9が奥にある坑道信号所である。拙稿[7]にも書いたように炭鉱と言えばまず思い出されるのはJohn Ford監督の"How Green Was My Valley"（邦題“わが谷は緑なりき”）であり、とりわけ過酷な坑内労働のあとの入浴シーンは悲しいドラマの中で数少ない幸せを感じさせる。図10の浴室を眺めながら、坑内で1日の仕事を終えた男も女も夕食前の至福のひとときを味わったのではなかろうかと想像した。

なお、万田坑施設ガイドブック（団体ガイド用マニュアル）[8]がインターネットから入手できるので、一読をお薦めする。
３．大牟田市石炭産業科学館
万田坑から県道29号線を西に向かうと国道208号線に出合う。これに沿って北上すれば大牟田には迷わず戻ることができる。途中、三池炭鉱の礎を築いた團琢磨（1858-1932）が

石炭山の永久などという事はありませぬ。無くなると今この人たちが市となっているのがまた野になる。石炭の無くなった他処の石炭を持ってきてもよい。何年もつきめぬけれども、いくらか百年の基礎になる。

と心血を注いだ三池港が西にあるが、時間がなかったので、大牟田駅真西の海岸寄り、巨大スーパーやも立地する新開発地域にある大牟田市石炭産業科学館に直行した。

同館は図11のような威容を誇る建物であり、エントランスの壁は実際の石炭層を再現しており、入場するやいなや石炭の存在感に圧倒される。ここでは、團琢磨の生涯に焦点を当てた映像や三池港の築港の映像が、ポイントをわかりやすく教えてくれる。団は13歳のときに岩倉使節団に同行して渡米し、MIT（当時はBoston Techと呼ばれていた）鉱山学科で学んだ。前述のように百年先を見越して果敢に行動したことには感動を覚える。

実は、筆者はこの日の「仁和寺の法師」状態であった。ホールの奥まったところからエレベーターで有明海の地下400mまで移動して坑内探検できる「ダイナミックトンネル」なる模擬坑道があったのだが、それに気づかず帰りを急ぎてしまった。同トンネルを訪れた知人によると、これは圧巻で一見の価値があるとのことである。

４．むすび
拙稿[6]に以下のように記載した：
炭鉱では、炭じん爆発事故がときどき発生し、多数の犠牲者を出してきた。昭和38年（1963年）11月9日には三井三池炭鉱三川坑で死者458人という最悪の事故が起こった。事故を告げる、真っ黒かつ非常に大きな字で印刷された新聞記事を見るのは、子供心ながら怖かった。

これは、東京オリンピック・東海道新幹線開業の1年前のことである。万田坑での案内の方によると、これらの事故の遺族の生活を少しでも安定したものとするため、近隣のいろいろな工場で働くことができるように努めたそうである。團が早い時点で破却したように、やがて炭鉱はその使命を終えたが、三池港の存在にも助けられ三井系の多くの企業が今の大牟田市地域を支えている。現在は、世界遺産登録が射程距離に入ったこともあり、今回の三池炭鉱跡の見学ではどこなく明るい雰囲気が感じられた。しかし、拙稿[6]で引用した永末十四雄の以下の文章[9]

＜エネルギー革命＞は一般には時代の経済的動向の修辞にすぎるものとして記憶されるかもしれないが、筑豊の住民は＜革命＞の言葉の意味するもの、その苛烈さ、酷薄さ、重たさを痛切に思い知らされてきた。において「筑豊」を「三池」に置き換えても間違いあるまい。おりしも福岡市博物館ではこの6月6日から、開館25周年記念「世界記憶遺産・山本作兵衛の世界～記憶の坑道～」が開催されていた。

参考文献
[6] 吉田英生、田川市石炭資料館、伝熱 43-183（2004）41。
[7] 吉田英生、Big Pit 英国国立石炭博物館、書き下ろし（2012）
http://www.wattandedison.com/Big_Pit.pdf
[8] 荒尾市教育委員会生涯学習課編、万田坑施設ガイドブック（団体ガイド用マニュアル）（上記の語句を検索エンジンに入力すればダウンロード可）
[9] 永末十四雄、筑豊 石炭の地域史，NHK ブックス 199，日本放送出版協会（1973）。

図11 大牟田市石炭産業科学館
行事カレンダー

<table>
<thead>
<tr>
<th>開催日</th>
<th>行事名</th>
<th>申込締切</th>
<th>原稿締切</th>
<th>問合先</th>
<th>編集号</th>
</tr>
</thead>
</table>

会主催行事

開催日 | 行事名 | 申込締切 | 原稿締切 | 問合先 | 編集号 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6月</td>
<td>No.15-12 第20回 動力・エネルギー技術シンポジウム (開催場所: 東北大学工学研究科 青森分館と上尾中央)</td>
<td>2015.3.30</td>
<td>2015.4.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>No.15-33 33rd Symposium on Foundations of Fluid Mechanics (基礎と実例まで-基礎学理から数値流体力学・流体計測演会) (開催場所: 東北大学工学部技術研究所)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>No.15-32 32nd Symposium on Foundations of Fluid Mechanics (基礎と拡張-CFDの基礎と拡張) (開催場所: 東北大学工学部技術研究所)</td>
<td>2015.3.16</td>
<td>2015.6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>第26回日本流体学会講演会 (開催場所: 高知工科大学)</td>
<td>2015.5.11</td>
<td>2015.7.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>第43回日本ガスタービン学会学術講演会 (開催場所: 東京工業大学ダイコンキャンパス)</td>
<td>2015.5.14</td>
<td>2015.7.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>第26回日本流体工学会年会 (開催場所: 東京工業大学大岡山キャンパス)</td>
<td>2015.6.14</td>
<td>2015.7.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>第26th International Symposium on Transport Phenomena (ISTP-26) (開催場所: オーストリヒオペランス)</td>
<td>事前登録 Abstract 2015.5.11 Manuscript 2015.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>No.15-48 熱工学コンファレンス 2015 (開催場所: 大阪工科大学吹田キャンパス)</td>
<td>2015.7.3</td>
<td>2015.9.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>International Gas Turbine Congress 2015 (IGTC2015 Tokyo)</td>
<td>2015.7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

会会催・協賛・後援行事

<table>
<thead>
<tr>
<th>開催日</th>
<th>行事名</th>
<th>申込締切</th>
<th>原稿締切</th>
<th>問合先</th>
<th>編集号</th>
</tr>
</thead>
<tbody>
<tr>
<td>6月</td>
<td>5月</td>
<td>No.15-12 第20回 動力・エネルギー技術シンポジウム (開催場所: 東北大学工学研究科 青森分館と上尾中央)</td>
<td>2015.3.30</td>
<td>2015.4.30</td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>No.15-33 33rd Symposium on Foundations of Fluid Mechanics (基礎と実例まで-基礎学理から数値流体力学・流体計測演会) (開催場所: 東北大学工学部技術研究所)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>No.15-32 32nd Symposium on Foundations of Fluid Mechanics (基礎と拡張-CFDの基礎と拡張) (開催場所: 東北大学工学部技術研究所)</td>
<td>2015.3.16</td>
<td>2015.6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>日本実験力学会2015年度年次講演会 (開催場所: 新潟大学工学部)</td>
<td>2015.4.30</td>
<td>2015.6.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>第43回日本ガスタービン学会学術講演会 (開催場所: 東京工業大学ダイコンキャンパス)</td>
<td>2015.5.11</td>
<td>2015.7.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>第26回日本流体学会年会 (開催場所: 東京工業大学大岡山キャンパス)</td>
<td>2015.6.14</td>
<td>2015.7.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>第26th International Symposium on Transport Phenomena (ISTP-26) (開催場所: オーストリヒオペランス)</td>
<td>事前登録 Abstract 2015.5.11 Manuscript 2015.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>No.15-48 熱工学コンファレンス 2015 (開催場所: 大阪工科大学吹田キャンパス)</td>
<td>2015.7.3</td>
<td>2015.9.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>International Gas Turbine Congress 2015 (IGTC2015 Tokyo)</td>
<td>2015.7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

伝熱 2015年7月 - 61 - J. HTSJ, Vol. 54, No. 228
<table>
<thead>
<tr>
<th>月日</th>
<th>日付</th>
<th>イベント</th>
<th>開催場所</th>
<th>開催日程</th>
<th>委員長/事務局</th>
<th>電話番号</th>
<th>FAX番号</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>11月</td>
<td>16(日) ～ 18(水)</td>
<td>第53回燃焼シンポジウム</td>
<td>つくば国際会議場</td>
<td>2015年7月10日 ～ 9月4日</td>
<td>第53回燃焼シンポジウム事務局 西岡研究室内 (筑波大学)</td>
<td>029-853-5121</td>
<td>029-853-5207</td>
<td>sympo53@combustionsociety.jp</td>
</tr>
<tr>
<td>11月</td>
<td>26(木) ～ 27(金)</td>
<td>第5回潜熱工学シンポジウム</td>
<td>金沢大学サテライトプラザ</td>
<td>2015年9月18日 ～ 10月12日</td>
<td>金沢大学理工研究域機械工学系 寺岡喜和</td>
<td>076-234-4750</td>
<td></td>
<td>latent_heat@ml.kanazawa-u.ac.jp</td>
</tr>
<tr>
<td>11月</td>
<td>29(日) ～12月2(火)</td>
<td>World Engineering Conference and Congress 2015</td>
<td>京都国際会議場</td>
<td>2015年9月18日 ～ 10月23日</td>
<td>WECC2015運営事務局 (株式会社コングレ内)</td>
<td>03-5216-5303</td>
<td></td>
<td>wecc2015-reg@congre.co.jp</td>
</tr>
<tr>
<td>11月</td>
<td>30(月) ～12月4(金)</td>
<td>The 12th International Conference on Power Engineering 2015</td>
<td>九州国際会議場</td>
<td>2015年11月30日 ～ 12月3日</td>
<td>ICOPE-15実行委員会委員長 刑部真弘 (東京海洋大学)</td>
<td>03-388-7853</td>
<td></td>
<td>icope15@jsme.or.jp</td>
</tr>
<tr>
<td>12月</td>
<td>5(土) ～4(金)</td>
<td>No.15-47 第18回スターリングサイクルシンポジウム</td>
<td>東京農工大学小金井キャンパス B 基盤</td>
<td>2015年11月20日 ～ 23日</td>
<td>実行委員会 上田祐樹 (東京農工大学)</td>
<td>042-388-7853</td>
<td>042-388-7853</td>
<td>uedayuki@cc.tuat.ac.jp</td>
</tr>
<tr>
<td>12月</td>
<td>15(火) ～17(木)</td>
<td>第29回数値流体力学シンポジウム</td>
<td>九州大学筑紫キャンパス</td>
<td>2015年11月25日 ～ 26日</td>
<td>CFD29実行委員会事務局 (九州大学応用力学研究所新エネルギー学部門内)</td>
<td>092-583-7776</td>
<td>092-583-7779</td>
<td>tananori@riam.kyushu-u.ac.jp</td>
</tr>
<tr>
<td>12月</td>
<td>17(水) ～18(金)</td>
<td>第24回微粒子化シンポジウム</td>
<td>神戸大学深江キャンパス総合学術交流棟</td>
<td>2015年11月30日 ～ 12月1日</td>
<td>日本液体微粒子学会事務局</td>
<td>06-6466-1588</td>
<td>06-6463-2522</td>
<td>info@ilass-japan.gr.jp</td>
</tr>
</tbody>
</table>
公益社団法人日本伝熱学会第53期(平成26年度)総会議事録

1. 日 時　平成27年6月4日(木)16時20分～17時50分
2. 場 所　福岡国際会議場 メインホール（〒812-0032 福岡市博多区石城町2-1）
3. 正会員数 1,065名
4. 出席者 682名（うち委任状出席482名）。定款第29条の定めるところにより、これは定足数である正会員数の過半数（533名）を上回り、総会は成立した。
5. 議事経過
 定款第27条により岡崎健会長が議長となり、以下の議案について逐次審議した。

第1号議案　第53期（平成26年度）事業報告の件
 議長より、公益社団法人日本伝熱学会第53期（平成26年度）総会議案（以下、「総会議案」と呼ぶ。）の第1号議案第53期（平成26年度）事業報告について諮り、満場一致でこれを可決した。

第2号議案　第53期（平成26年度）会務報告の件
 議長より、総会議案の第2号議案第53期（平成26年度）会務報告について諮り、満場一致でこれを可決した。

第3号議案　第53期（平成26年度）収支決算の件
 議長より、総会議案の第3号議案第53期（平成26年度）収支決算について諮り、満場一致でこれを可決した。

第4号議案　第54期（平成27年度）事業計画の件
 議長より、総会議案の第4号議案第54期（平成27年度）事業計画について報告を行った。

第5号議案　第54期（平成27年度）収支予算の件
 議長より、総会議案の第5号議案第54期（平成27年度）収支予算について報告を行った。

第6号議案　第54期（平成27年度）役員・協議員選出の件
 議長より、総会議案の第6号議案第54期（平成27年度）役員の選出について以下のとおり次期役員の提案がなされ、満場一致でこれを可決した。

定款第17条第1項により退任する役員
 理事　佐藤 敦　　理事　中部　主敬
理事会
高野 孝義
理事
高橋 厚史
監事
安田 俊彦

理事
平澤 良男
理事
二本柳 保

定款第17条第1項ただし書きにより退任する役員
代表理事（会長） 岡崎 健
理事（副会長） 圓山 重直
理事（副会長） 黒坂 俊雄
理事 高松 洋

理事
花村 克悟
理事
小原 拓
理事
廣田 眞史
理事 高田 保之
理事 桑原 不二朗
理事 太田 淳一
理事 宮良 明男
理事 木戸 長生
監事
黒坂 俊雄

定款第17条第1項ただし書きにより選任される役員
理事
小澤 守
理事 芹澤 良洋
理事 功刀 資彰
理事 吉田 篤正

第53期に新たに選任される役員
定款第17条第1項により選任される役員
理事
花村 克悟
理事 小原 拓
理事
廣田 眞史
理事 高田 保之
理事 桑原 不二朗
理事 太田 淳一
理事 宮良 明男
理事 木戸 長生

第53期に新たに選任される役員
定款第17条第1項ただし書きにより選任される役員

第8号議案 議事録署名人選任の件
議長より，本日の議事の経過を議事録にまとめるにあたり，議長に加えて議事録署名人2名を選任したい旨の提案があり，協議の結果，圓山重直氏，佐藤勲氏の2名を選任した。

以上により，本日の議事を終了した。

平成27年6月4日
公益社団法人日本伝熱学会第53期（平成26年度）総会

議長 岡崎 健

議事録署名人 圓山 重直

議事録署名人 佐藤 勲
日本伝熱学会 関西支部主催
第14回関西伝熱セミナー
「自然エネルギー・環境問題の現状と今後の可能性」

日本伝熱学会関西支部では、2年に1度宿泊付の「関西伝熱セミナー」を開催してまいりました。今回は第14回目となり、滋賀県大津市のおごと温泉を会場として「自然エネルギー・環境問題の現状と今後の可能性」について考えるセミナーを企画いたしました。講師にはそれぞれの分野での深い造詣を持たれた自然エネルギーや環境問題、最新の伝熱技術に関するエキスパートの方々に来ていただき、話題提供していただきます。参加者の皆様とともに、楽しく討論できれば幸いです。多数の方々のご参加をお待ちしております。

開催日時　2015年8月28日（金）13:00～29日（土）12:00
会場　琵琶湖グランドホテル 滋賀県大津市雄琴6-5-1、おごと温泉（http://www.biwakogh.co.jp/）
参加定員　80名
ホームページ　http://htsj-kansai.sakura.ne.jp/seminar2015/
参加費　一般25,000円、学生15,000円（講演資料、28日夕食・宿泊、29日朝食込）
支払方法　銀行振込（振込口座をお知らせいたしますので、申込締切日までにご送金下さい。）
申込方法　氏名・所属・参加種別（一般・学生）・連絡先（電話・メールアドレス）をご記載の上、下記アドレスまで電子メールでお申し込みください。

申込先・問合先　ogoto-seminar@rins.ryukoku.ac.jp（第14回関西伝熱セミナー事務局）
申込締切　2015年7月31日（金）

プログラム
第1日目：8月28日（金）
13:00-13:10　挨拶
13:10-13:50　「地表流渦の制御とそのエネルギーの利用」
　熊谷　道夫　氏（立命館大学　琵琶湖Σ研究センター）
14:00-14:40　「先端的気象シミュレーションによる乱流熱輸送現象の解明」
　大西　領　氏（国立研究開発法人　海洋研究開発機構地球情報基盤センター）
14:40-15:20　「マントル内部の不均質性が生み出す多様なプルームの姿」
　熊谷　一郎　氏（明星大学）
15:30-16:10　「自動車用の最新熱交換器の紹介」
　佐藤　英明　氏（株式会社　デンソー　熱交換器開発部）
16:10-16:50　「熱音響技術の可能性と課題について」
　坂本　眞一　氏（滋賀県立大学）
18:00-20:00　意見交換会

第2日目：8月29日（土）
7:30-9:00　朝食・チェックアウト
9:00-9:40　「水素インフラ普及への課題と熱物性測定」
　高田　保之　氏（九州大学）
9:40-10:20　「家庭用給湯器の環境対応技術」
　濱田　哲郎　氏（株式会社　ノーリツ　研究開発本部）
10:30-11:10　「集光型太陽熱発電（CSP）の現状とソーラーレシーバの研究開発」
　松原　幸治　氏（新潟大学）
11:10-11:50　「関西のエネルギー事情と夏季の節電・ヒートアイランド対策」
　西村　伸也　氏（大阪市立大学）
11:50-12:00　挨拶、解散

協賛：日本機械学会関西支部、日本機械学会動力エネルギーシステム部門、化学工学会エネルギーセンタ会、化学工学会熱工学部会、日本冷凍空調学会、日本熱物性学会、日本エネルギーサイエンス学会

伝熱　2015年7月 - 65 - J. HTSJ, Vol. 54, No. 228
編集出版部会からのお知らせ
一各種行事・広告などの掲載について一

インターネットの普及により情報発信・交換能力の比類な非進展がもたらされました。一方、ハードコピーとしての学会誌には、アーカイブ的な価値のある内容を手にとって熟読できる点や、一連のページを眺めて全貌が容易に理解できる点など、いくら電子媒体が発達してもかなわない長所があるのではないかと思います。ただし、学会誌の印刷・発送には多額の経費も伴いますので、当部会ではこのほど、密度のより高い誌面、すなわちハードコピーとしてぜひとも残すべき内容を厳選し、インターネット（HP: ホームページ、ML: メーリングリスト）で扱う情報との棲み分けをした編集方針を検討しました。

この結果、これまで会告ページで取り扱ってきた各種行事・広告などの掲載につき、以下のような方針で対応させていただきたく、ご理解とご協力をお願いする次第です。

<table>
<thead>
<tr>
<th>対 象</th>
<th>対 応</th>
<th>具体的さ手続き（電子メールでの連絡を前提としています）</th>
</tr>
</thead>
<tbody>
<tr>
<td>本会（支部）主催による行事</td>
<td>無条件で詳細を、会誌と HPに掲載、MLでも配信</td>
<td>申込者は、総務部会長・編集出版部会長・広報委員会委員長・総務担当副会長補佐協議員に記事を同時送信下さい。</td>
</tr>
<tr>
<td>関係学会や本会会員が関係する組織による国内外の会議・シンポジウム・セミナー</td>
<td>条件付き掲載 会誌：1件当たり4分の1ページ程度で掲載（無料） HP：行事カレンダーに掲載してリンク形成（無料） ML：条件付き配信（無料）</td>
<td>申込者は、まず内容を説明する資料を総務担当副会長補佐協議員に送信下さい。審議の結果、掲載可となった場合には総務担当副会長補佐協議員より申込人にその旨通知しますので、申込者は記事を編集出版部会長（会誌担当）と広報委員会委員長（HP担当）に送信下さい。</td>
</tr>
<tr>
<td>大学や公的研究機関の人事公募（伝熱に関係のある分野に限る）</td>
<td>会誌：掲載せず HP：条件付き掲載（無料） ML：条件付き配信（無料）</td>
<td>申込者は、公募内容を説明する資料を総務担当副会長補佐協議員に送信下さい。審議の結果掲載可となった場合には総務担当副会長補佐協議員より申込人にその旨通知しますので、申込者は記事を広報委員会委員長（HP担当）に送信下さい。</td>
</tr>
<tr>
<td>一般広告</td>
<td>会誌：条件付き掲載（有料） HP：条件付き掲載（バナー広告のみ、有料）</td>
<td>申込者は、編集出版部会長（会誌担当）または広報委員会委員長（HP バナー広告担当）に広告内容を送信下さい。掲載可となった場合には編集出版部会長または広報委員会委員長より申込人にその旨送信しますので、申込者は原稿を編集出版部会長または広報委員会委員長に送信下さい。掲載料支払い手続きについては事務局から連絡します。バナー広告の取り扱いについてはhttp://www.htsj.or.jp/banner.pdfを参照下さい。</td>
</tr>
</tbody>
</table>

【連絡先】
・総務部会長：小野直樹（芝浦工業大学）：naokiono@sic.shibaura-it.ac.jp
・編集出版部会長：鷲田真史（三重大学）：hirota@mach.mie-u.ac.jp
・広報委員会委員長：田口良広（慶應義塾大学）：tag@sd.keio.ac.jp
・総務担当副会長補佐協議員：篠部崇（東京工業大学）：sasabe.t.ab@m.titech.ac.jp
・事務局：大澤毅士・村松佳子：office@htsj.or.jp

【注意】
・原稿はWordファイルまたはTextファイルで送信下さい。
・HPはメンテナンスの都合上、掲載は申込日の翌月、または削除も希望掲載期限の翌月程度の時間遅れがあることを了承下さい。
・MLでは、原則としてテキストファイルの形式で送信します。pdf等の添付ファイルで送信を希望される場合には相談下さい。

伝熱　2015年7月　- 66 -　J. HTSJ, Vol. 54, No. 228
事務局からの連絡

53〜54期入会（2015.3.4〜2015.6.17）正32名、学生50名

<table>
<thead>
<tr>
<th>資氏名</th>
<th>所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>大嶋元啓</td>
</tr>
<tr>
<td>正</td>
<td>久保田澄之</td>
</tr>
<tr>
<td>正</td>
<td>丼谷和行</td>
</tr>
<tr>
<td>正</td>
<td>関根幸雄</td>
</tr>
<tr>
<td>正</td>
<td>新澤真洋</td>
</tr>
<tr>
<td>学</td>
<td>王麗</td>
</tr>
<tr>
<td>学</td>
<td>丸岡成</td>
</tr>
<tr>
<td>正</td>
<td>王海東</td>
</tr>
<tr>
<td>学</td>
<td>赤尾満翔大</td>
</tr>
<tr>
<td>学</td>
<td>河野佑大</td>
</tr>
<tr>
<td>学</td>
<td>武田孝介</td>
</tr>
<tr>
<td>学</td>
<td>彩矢仁志</td>
</tr>
<tr>
<td>学</td>
<td>瀧見卓司</td>
</tr>
<tr>
<td>学</td>
<td>津田慎一郎</td>
</tr>
<tr>
<td>学</td>
<td>宫川聖史</td>
</tr>
<tr>
<td>学</td>
<td>副島光洋</td>
</tr>
<tr>
<td>正</td>
<td>宮本仁志</td>
</tr>
<tr>
<td>正</td>
<td>勝身俊之</td>
</tr>
<tr>
<td>学</td>
<td>九村真生</td>
</tr>
<tr>
<td>学</td>
<td>西川浩至</td>
</tr>
<tr>
<td>学</td>
<td>中垣隆雄</td>
</tr>
<tr>
<td>学</td>
<td>片岡恒雄</td>
</tr>
<tr>
<td>学</td>
<td>須田亮亮</td>
</tr>
<tr>
<td>学</td>
<td>永谷佑樹</td>
</tr>
<tr>
<td>正</td>
<td>小倉裕治</td>
</tr>
</tbody>
</table>

期入会(2015.3.4〜2015.6.17)

期入会(2015.3.4〜2015.6.17)正32名、学生50名

<table>
<thead>
<tr>
<th>資氏名</th>
<th>所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>西川浩至</td>
</tr>
<tr>
<td>正</td>
<td>平沢浩一</td>
</tr>
<tr>
<td>学</td>
<td>櫻井大地</td>
</tr>
<tr>
<td>学</td>
<td>冨川輝</td>
</tr>
<tr>
<td>学</td>
<td>吉野敏史</td>
</tr>
<tr>
<td>学</td>
<td>小宅直文</td>
</tr>
<tr>
<td>学</td>
<td>王麗</td>
</tr>
<tr>
<td>学</td>
<td>丸岡成</td>
</tr>
<tr>
<td>正</td>
<td>大西正人</td>
</tr>
<tr>
<td>正</td>
<td>河合明雄</td>
</tr>
<tr>
<td>正</td>
<td>丸岡成</td>
</tr>
<tr>
<td>正</td>
<td>大西正人</td>
</tr>
<tr>
<td>正</td>
<td>川井良文</td>
</tr>
<tr>
<td>正</td>
<td>小宅直文</td>
</tr>
<tr>
<td>正</td>
<td>新澤真洋</td>
</tr>
<tr>
<td>学</td>
<td>王麗</td>
</tr>
<tr>
<td>学</td>
<td>冨村浩一</td>
</tr>
<tr>
<td>正</td>
<td>大島純</td>
</tr>
<tr>
<td>正</td>
<td>平沢浩一</td>
</tr>
<tr>
<td>正</td>
<td>伊藤雅彦</td>
</tr>
<tr>
<td>学</td>
<td>河合明雄</td>
</tr>
<tr>
<td>学</td>
<td>山口裕吾</td>
</tr>
<tr>
<td>学</td>
<td>藤井康太郎</td>
</tr>
<tr>
<td>学</td>
<td>田渕一希</td>
</tr>
<tr>
<td>正</td>
<td>森内浩</td>
</tr>
<tr>
<td>正</td>
<td>中垣隆雄</td>
</tr>
<tr>
<td>正</td>
<td>牧野拓也</td>
</tr>
<tr>
<td>学</td>
<td>須田亮亮</td>
</tr>
<tr>
<td>学</td>
<td>永谷佑樹</td>
</tr>
<tr>
<td>正</td>
<td>丹治雄一</td>
</tr>
</tbody>
</table>
熱流束センサー

熱流束センサーは、熱エネルギーの移動密度（W/㎠）に比例した直流電圧を出力します。弊社の製品は、大変手軽に高速・高精度で熱流量の測定をすることができます。
特に応答速度の早いこと、センサーからの出力レベルが高いことが特徴で、熱流束マイクロセンサー（HFM）では、応答速度最高6マイクロ秒を達成しています。

熱流束マイクロセンサー

センサー本体の構造は、標識フィルタ・ディスクの中心と周囲の温度差を測定する、半導体型熱電対をとなっており、フィルタ・ディスクはコンスタントに作られ、銅製の円柱形ヒートシンクに取り付けられています。水冷式は取付け場所の自由度が高く長時間の測定が可能です。

サーモゲージ

gSKIN® 熱流束センサー

「gSKIN®」熱流束センサーは、センサー自身の表面を通過する熱流束を29対の超高感度な熱電対で用いて測定します。センサーは、72㎛の広さを持ち、厚さは0.4mmです。レベル0パッケージングの最適化ポリマーと1レベルパッケージングの金属の構造になっています。

使用例

- エンジン内壁の熱伝達状態観察
- ロケットエンジンのトラバース実験
- タービンプレード熱風洞試験
- 自動車両用エアバッグ安全性試験
- ジェットエンジンファイヤー試験

使用例

- 燃焼炉・溶接炉の熱量測定
- 火災実験の際の熱伝達電極
- バーナーなど熱源の校正用基準器
- 高温性・微熱性試験（ISO5667、6558、6660）
- 水冷型かつ空冷型のファイヤー・スキマテスト

使用例

- 電気・電子機器内の発熱・放熱状態測定
- 熱交換器の効率測定
- パイプの放熱状態測定
- 軽水および重水自体の測定
- 熱移動・熱放出の即時応答測定

センサテクノス株式会社
URL www.senstech.jp E-mail info@senstech.jp

〒106-0031 東京都港区芝浦3-24-17 鳳ビル4F
TEL 03-5785-2424 FAX 03-5785-2323
CAPTEC社（フランス）
CAPTEC（キャプテック）社は、独自の高度技術により、低熱抵抗で高精度な熱流束センサーを開発・製造しております。環境温度が変化しても感度は常に一定で、熱流束計に併用した電圧を高精度に出力します。
輻射センサーは、輻射熱のみを計測する特微的なセンサーです。特注形状も承っております。

<table>
<thead>
<tr>
<th>熱流束センサー</th>
<th>輻射センサー</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイズ：5×5mm〜300×300mm</td>
<td></td>
</tr>
<tr>
<td>厚み：0.4mm（平面用・曲面用）</td>
<td></td>
</tr>
<tr>
<td>温度範囲：-200〜200℃</td>
<td></td>
</tr>
<tr>
<td>応答速度：約200ms</td>
<td></td>
</tr>
<tr>
<td>オプション：温度計測用熱電対内蔵</td>
<td></td>
</tr>
<tr>
<td>形状：正方形・長方形・円形</td>
<td></td>
</tr>
<tr>
<td>特注品：高温用・高圧用・防水加工</td>
<td></td>
</tr>
<tr>
<td>サイズ：5×5mm〜50×50mm</td>
<td></td>
</tr>
<tr>
<td>厚み：0.25mm</td>
<td></td>
</tr>
<tr>
<td>温度範囲：-200〜250℃</td>
<td></td>
</tr>
<tr>
<td>応答速度：約50ms</td>
<td></td>
</tr>
<tr>
<td>オプション：温度計測用熱電対内蔵</td>
<td></td>
</tr>
<tr>
<td>形状：正方形・長方形・円形</td>
<td></td>
</tr>
<tr>
<td>波長領域：赤外／可視＋赤外</td>
<td></td>
</tr>
</tbody>
</table>

MEDTHERM社（アメリカ）
MEDTHERM（メディアーム）社は、これまで30年以上にわたり、高品質の熱流計及び超高速応答の熱電対を提供してまいりました。航空宇宙・火災・燃焼分野における豊かな実績を有しています。用途に対応し、様々な形状・仕様の製品を製造可能です。

熱流計／輻射計

<table>
<thead>
<tr>
<th>熱流束計</th>
<th>輻射計</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度範囲：0.2〜4000Btu/kf/sec（フルスケール）</td>
<td></td>
</tr>
<tr>
<td>サイズ：1/16インチ（約1.6mm）〜1インチ（約25.4mm）</td>
<td></td>
</tr>
<tr>
<td>最高温度：200℃（水冷なし）/150℃（水冷）</td>
<td></td>
</tr>
<tr>
<td>出力信号：0〜10mA（DC・線形出力）</td>
<td></td>
</tr>
<tr>
<td>直線性：±2％（フルスケールに対して）</td>
<td></td>
</tr>
<tr>
<td>応答速度：50ms以下*</td>
<td></td>
</tr>
<tr>
<td>再現性：±0.5％</td>
<td></td>
</tr>
<tr>
<td>累計精度：±2％</td>
<td></td>
</tr>
<tr>
<td>オプション：熱流計/視野角指定等</td>
<td></td>
</tr>
</tbody>
</table>

超高速応答同軸熱電対

本同軸型熱電対は、第1熱電対のチュープの中に第2熱電対ワイヤーが導入される同軸構造になっています。
第2熱電対ワイヤーは、厚み0.005インチ（約0.13mm）の特殊なセラミックで絶縁コーティングされています。
プローブ先端の熱電対接点は、厚み1〜2ミクロンの金属皮膜が真空蒸着されており、最高1マイクロ秒の応答速度を実現しています。

【主な用途】
表面温度及び表面熱流束計測
風洞試験・エンジンリンダーエアコンプレッサー等

【最小プローブ径】
0.015インチ（約0.39mm）

【熱電対タイプ】
T型（銅／コンスタンタン）
J型（鉄／コンスタンタン）
E型（クロメル／アルメル）
K型（クロメル／アルメル）
S型（白金10％ロジウム／白金）

【温度範囲】
-270℃〜+400℃
-210℃〜+1200℃
-270℃〜+1000℃
-270℃〜+1372℃
+200℃〜+1700℃

ITI社（アメリカ）
ITI（International Thermal Instrument Company）社は、1969年の設立以来、高温用熱流計や火災強度熱流計など、特殊な用途に対応した製品を提供しています。特注品の設計・製造も承っております。

高温用熱流計

| 最高温度：980℃ |
| 応答速度：0.1s |
| 直径：8mm〜25.5mm 厚み：2.5mm |

水冷式火災強度熱流計

| 最高温度：1900℃ |
| 応答速度：0.1s |
| 最大熱流束レンジ：0〜3000W/cm² |

当社取扱製品の適用分野
■ 伝熱一般 ■ 温熱環境 ■ 炉・ボイラー
■ 航空宇宙 ■ 火災 ■ 燃焼 ■ 各種エンジン

有限会社 テクノオフィス
〒225-0011 神奈川県横浜市青葉区あざみ野3-20-8-8-B
TEL. 045-901-9861 FAX. 045-901-9522
URL: http://www.techno-office.com

本広告に掲載されている内容は2010年9月現在のもので、製品の仕様は予告なく変更される場合があります。
編修出版部会ノート
Note from the JHTSJ Editorial Board

本号では、「赤外線サーモグラフィによる熱計測」に焦点を当てた特集を組みました。サーモグラフィ装置は面の温度分布を非接触で簡便に測定できるのに加え、検出素子の製造技術の進歩により画素数や温度分解能が向上しており、また低価格化も進んでいるため、近年幅広い分野で急速に普及しています。一方で、伝熱の分野のように定量的な温度計測が必要とされる場合には、果たしてどれだけ正確な温度が測定できるのか評価が分かれるところだと思います。そこで、本特集では、サーモグラフィ装置による熱計測に注力してこられた方々に執筆を依頼し、正しい温度を測定するためのヒントを読み取っていただけるのではないかと期待しています。最後に、本特集に快くご寄稿いただきました著者の皆様に厚くお礼申し上げます。

中村 元（防衛大学校）
Nakamura, Hajime (National Defense Academy)
e-mail: nhajime@nda.ac.jp

福岡における日本伝熱シンポジウム期間中の総会を以って、中部主敬前部会長から編集出版部会取り纏め役を引き継ぎました。これからの2年間、下記の方々と一緒に会誌「伝熱」の編集出版を担当して参りますが、何卒よろしくお願い申し上げます。ご承知のように、「伝熱」は年4回の発行で、特集記事と各種報告の他にプロジェクトQ・ネイチャーQ・エデュケーションQ・ヒストリーQ／Heart Transfer／博物館めぐり／海外レターなど、これまでと同様に会員の皆様が気軽に情報交換できる場を提供して行く所存です。今期は支部便りも計画しています。皆様からのご寄稿も歓迎致しますので、話題をお持ちの方は下記の連絡先まで是非ご一報下さい。

廣田 真史（三重大学）
Hirota, Masafumi (Mie University)
e-mail: hirota@mach.mie-u.ac.jp

副会長 功刀 資彰（編集出版担当, 京都大学）
部会長 廣田 真史（三重大学）
委員
（理事） 桑原 不二朗（静岡大学）、野村 信福（愛媛大学、留任）、山田 雅彦（北海道大学、留任）
（協議員） 須賀 一彦（大阪府立大学）、鈴木 雄二（東京大学、留任）、多田 幸生（金沢大学）、
土屋 敏章（富士電機（株））、中村 元（防衛大学校、留任）、中山 浩（中部電力（株））、
西村 顕（三重大学）、服部 博文（名古屋工業大学）
TSE チーフエディター 花村克悟（東京工業大学）
編集幹事 伏信一慶（東京工業大学）
編集出版部会 連絡先：〒514-8507 三重県津市栗真町屋町 1577
三重大学大学院工学研究科機械工学専攻
廣田 真史
Phone & Fax: 059-231-9385 / E-mail: hirota@mach.mie-u.ac.jp

伝熱 2015 年 7 月 - 71 - J. HTSJ, Vol. 54, No. 228