傾斜した加熱円管内に生じる自然対流熱伝達の数値解析

Numerical Analysis of Heat Transfer on Natural Convection in Inclined Heated Circular Tube

鳥山孝司 鈴木亘
(Toriyama K. and Suzuki W.)

Experimental Study on Behaviors of Two Successive Bubbles in Subcooled Flow Boiling at High Degrees of Subcooling

Cao Y., Kawara Z., Yokomine T. and Kunugi T.
伝熱 2016年1月
J. HTSJ, Vol. 55, No. 230

左：イオン液体に有機分子を溶解させて作製した光アップコンバーターが、太陽光の赤色部分（バンドパスフィルターにより抽出、半値幅10nm）を青色光に変換する様子。
右：試料の光吸収スペクトルおよび発光スペクトル。光吸収と三重項生成を担う分子（右）および発光を担う分子（左）を図内に示した。
（特集記事「分子間エネルギー移動を用いた光子のエネルギー上方変換（村上陽一）」より）

メタマテリアルの模式図
MPによる電磁場増強。
（ベクトルは電場を、コンターは磁場の大きさを示す）
左図は波長選択的熱ふく射エミッターのためのメタマテリアルである。これは右図に示すように光によって金属部に反平行電流を励起させ、誘電体層内において強い磁場の増強効果が得られる共鳴現象（マグネティックポラリトン、MP）を利用している。これにより、共鳴波長等の熱ふく射物性を自由自在に制御することが可能である。
（特集記事「メタマテリアルによる自由自在な熱ふく射制御：熱と光の新たなエネルギー変換に向けて（桜井篤）」より）
伝 熱

目 次

〈巻頭グラビア〉
村上 陽一（東京工業大学）、桜井 篤（新潟大学）

〈追悼〉
笠木伸英先生を偲ぶ
鈴木 雄二（東京大学）
Sanjoy BANERJEE (The City University of New York)
Michael LESCHZINER (Imperial College London)

〈特集：新しいエネルギー変換〉
特集「新しいエネルギー変換」にあたって
フォノンエンジニアリングによる熱電材料の開発
メタマテリアルによる自由自在な熱放射制御：熱と光の新たなエネルギー変換に向けて
温度分布制御マイクロフローリアクタによるアンモニア燃焼反応機構の検証
分子間エネルギー移動を用いた光子のエネルギー上方変換
電極相界面極限利用を実現するレドックスフローポリマー

〈セミナー〉
第14回関西伝熱セミナー「自然エネルギー・環境問題の現状と今後の可能性」

〈国際活動・会議報告〉
熱物質輸送国際センター（ICHMT）の現状と今後の課題
第24回IIR国際冷凍会議（ICR2015）報告

〈博物館めぐり〉
パリの工芸・技術博物館、国立土木学校、エコール・ポリテクニークを訪ねて

〈行事カレンダー〉
＜お知らせ＞
第53回日本伝熱シンポジウム研究発表論文募集……………………………………………………69
優秀プレゼンテーション賞（第53回日本伝熱シンポジウム）について……………………73
日本伝熱学会主催 第4回国際伝熱フォーラム……………………………………………………74
事務局からの連絡
・編集出版部会からのお知らせ…………………………………………………………………75
・新入会員一覧………………………………………………………………………………………76

＜編集出版部会ノート＞ ……………………………………………………………………………79
Vol.55, No. 230, January 2016

CONTENTS

<Opening-page Gravure:heat-page>
Yoichi MURAKAMI (Tokyo Institute of Technology)
Atsushi SAKURAI (Niigata University)
Opening Page

<Eulogy>
To the Memory of Professor Nobuhide KASAGI
Yuji SUZUKI (The University of Tokyo)
Sanjoy BANERJEE (The City University of New York)
Michael LESCHZINER (Imperial College London)
1

<Special Issue: New Energy Conversion Technologies>
Preface for the Special Issue “New Energy Conversion Technologies”
Yuji SUZUKI (The University of Tokyo)
8
Development of Thermoelectric Materials by Phonon Engineering
Junichiro SHIOMI (The University of Tokyo)
9
A Flexible Thermal Radiation Control with Metamaterial: Toward New Energy Conversion of Heat and Light
Atsushi SAKURAI (Niigata University)
18
Validation of Ammonia Combustion Chemistry by a Micro Flow Reactor with a Controlled Temperature Profile
Hisashi NAKAMURA (Tohoku University)
24
Energy Upconversion of Photons by Using Intermolecular Energy Transfer
Yoichi MURAKAMI (Tokyo Institute of Technology)
32
Redox Flow Batteries with Advanced Flow Field Design and Improved Electrode Properties
Shohji TSUSHIMA (Osaka University)
Takahiro SUZUKI (Osaka University)
41

<Reports on Seminar / International Activity / International Conference>
Report on the 14th Kansai Heat Transfer Seminar
Hisato MINAGAWA (The University of Shiga Prefecture)
Yoshihi NOGUCHI (Ryukoku University)
51
Present Status and Future Issues about International Centre for Heat and Mass Transfer (ICHMT)
Hideo YOSHIDA (Kyoto University)
54
Choyu WATANABE (Chubu Electric Power Co., Inc.)
59

<Museum Tour>
Visits to Musée des Arts et Métiers, École Nationale des Ponts et Chaussées, and École Polytechnique in Paris
Hideo YOSHIDA (Kyoto University)
63

<Calendar>
67
<Announcements>
69
<Note from the JHTSJ Editorial Board>
79
追悼

笠木伸英先生を偲ぶ

To the memory of Professor Nobuhide KASAGI

鈴木 雄二（東京大学）
Sanjoy BANERJEE (The City University of New York)
Michael LESCHZINER (Imperial College London)
Yuji SUZUKI (The University of Tokyo)

東京大学名誉教授、科学技術振興機構（JST）研究開発戦略センター副センター長、本学会元会長である笠木伸英先生におかれましては、2015年7月29日にご逝去されました。享年69歳でいらっしゃいました。2014年8月に京都で開催された国際伝熱会議の議長を務められ、その直後から治療にあったものの、甲斐無く旅立ちました。ご葬儀は、先生のご遺志によりご家族のみでしめやかに執り行われました。

笠木伸英先生は、1947年5月8日、北海道にてお生まれになりました。都立新宿高校卒業後、1966年に東京大学理科一類に入学され、1976年に平田賢先生のもとで博士課程を修了されました。学位論文のテーマは「体積力を伴う乱流境界層の輸送機構に関する研究」でいらっしゃいました。修了後、ただちに東京大学講師となられ、1977年に同助教授、1990年に教授になり、2012年に定年退職されました。

また、我が国における乱流知的制御の牽引役として、壁乱流の準秩序構造に基づいた摩擦抵抗低減機構の解明、噴流のアクティブ制御、MEMS・アクチュエータ群を用いた壁乱流のフィードバック制御システムの開発を行い、準秩序的な流れ構造を選択的に操作することにより、極めて効率の制御が可能であることを数値計算、実験の両面から明らかにされました。2009年には、河村洋先生、長野靖尚先生（誠に残念ながら本年6月にご逝去）、宮内敏雄先生とともに、「乱流工学ハンドブック」をまとめられ、2009年には、河村洋先生、長野靖尚先生（誠に残念ながら本年6月にご逝去）、宮内敏雄先生とともに、「乱流工学ハンドブック」をまとめられます。

笠木先生のご研究の一つの転機になったのは、1980 年〜1981 年にかけて客員研究員として滞在されたスタンフォード大学時代だったのではないかと思います。先生は Thermosciences Divisions の R. Moffat 教授の研究室で感温液晶の応用をはじめとする乱流熱伝達関連の研究を進められました。まだ本会が伝熱研究会だった頃の学会誌である伝熱研究 21 巻 80 号（1981 年）に、その時の状況を「スタンフォード大学滞在記」として書かれていらっしゃいます。当時、スタンフォード大学の乱流研究は 1 つの黄金期であり、S. J. Kline, W. Kays, W. Reynolds, J. Ferziger, J. Kim, P. Moin, D. Chapman をはじめとする多くの教員が精力的に研究を進めしていました。先生はきっとスタンフォードの層の厚さを痛感されたのだろうと思います。また、それと同時に「(前略)周囲の米国人も小生が日本人だからゆっくり話してやろうという心使いも薄く、話せぬ者はおいておかれという感じで、すっかり気が滅入ってしまった次第」と書かれていらっしゃいます。欧米人と真っ正面から英語で議論する、端から見ていなくても懐れ懐れする笠木先生のお姿をご存じの方々（筆者自身も含め）には信じられないと思いますが、先生のご性格から察するに、帰国後、きっと血の滲むような努力をされたに違いありません。

当時スタンフォードに在籍していたスタッフのうち、John Kim（現、カリフォルニア大学ロサンゼルス校）, Parviz Moin（現、スタンフォード大学）とは同世代であり、その後の乱流研究でも競争相手だったので、良き友人であるとともにライバル意識を強く感じていたようです。

筆者が笠木先生の研究室の門をくぐったのは、1986 年であり、平田賢先生が教授、笠木先生が助教授でいらっしゃいました。研究室全体の研究会とは別に、テーマごとに別れて笠木先生と突っ込んだ議論をするミーティングがありました。卒論生の最初のころは、何かご説明しようとして却って

John Kim 夫妻と第 6 回日韓熱流体工学会議にて（済州島、2005 年 3 月）
を持っていても、実験の前提や論理の不備を指摘され、本題にたどり着く前段階であえなく轟沈することがほとんどでした。また、実験室には敢えて足を運ばれなかったのだと思いますが、学生に実験の状況を1つ1つ聞いた上で裏紙にスラスラとポンチ絵や数式を書かれて、これから検討すべき方向性を明示されていました。そのような議論の中で、我々学生は、論理的な考え方を学んでいったのだと思います。

当時の笠木先生の周りには、昼間は殺気に感じるほどピンと張り詰めた空気がありましたが、夜になると研究室で一緒にビールを飲んで学生の馬鹿話に付き合って頂けることもありました。また、その話の中でも、研究への考え方や人生観について我々が得ることが多かったと思います。新宿高校水泳部の話や、子供の頃に禅寺に預けられた話、スタンフォード時代の研究の話など強く印象に残っています。

筆者は修士学生時代にX型熱膜流速計を用いたチャネル乱流計測の研究をしていました。一回40時間もかかる実験のうえ、再現性が得られず、全く成果が出ませんでした。しかし、博士課程に入ってから、ようやくまともな実験データが得られるようになりました。また、先輩の学生だった黒田氏（現、北海道大学）が行ったチャネル乱流DNSの計算結果を用いた解析により、壁乱流計測におけるX型熱膜（熟線）流速計の原理的な問題が明らかになってきました。そんなある日、地下実験室で実験準備をしていると、先生から電話が掛かってきて、国際会議に出してみないか、というお話を頂きました。もちろん二つ返事で飛びつきましたが、その最初に発表した国際会議の開催地が当時まだユーゴスラビアだったドブロフニクでした。先生は学生を海外旅行に慣れないため、日本と現地の往復は一人で行動しなければならず大変でしたのが、今でも良い思い出です（写真左上）。

また、当時の研究室には、優秀な先輩・後輩が沢山いて、また全員が乱流に関する研究をテーマにしていたので、様々な突っ込んだ議論ができました。笠木先生ご自身、「研究室には波があって、何度か黄金期があるものだ」と仰っていましたが、その一つの黄金期に研究室に居られたことは、筆者にとっては非常に幸運でした。乱流分野で笠木先生のお名前は海外にも広く知られており、当時としては海外から来訪される先生方も多く、夕食に一緒に連れて行って頂くこともたびたびありました（写真左下）。

筆者は、1994年度に長野靖尚先生のもとで名古屋工業大学の講師を勤めた以外は、笠木先生のもとで研究を続けてきました。先生の膨大な学内外のお仕事の一部をお手伝いすることも多くありましたが、それも大学人としては良いトレーニングを受けたと感謝しております。准教授に昇任して少しらくから、「乱流はやるな」「分散エネルギーもやるな」と言い渡され、当時は崖から突き落とされたような気持ちになったこともありましたが、振り返ってみるとそのご指導のおかげで現在
追悼

笠木先生の研究があると痛切に感じています。笠木先生は身内にも厳しいがそれ以上に自分自身に一番厳しい先生でした。また、男気に溢れ、正義感が人一倍強く、常に物事のバランスを考えていたら、『研究はしっかりとした一段一段の積み重ねでなければ駄目だ』、「目の前にいない相手と競争しろ」、「分かれ道で迷ったら、より厳しい道を選べ」、「Think, Think, Think! (考えて考えて考え抜け)」、「Engineerとしての高い職業意識を持て」など、様々な研究に対する考え方や人生観をお教え顶きました。常に、大学、学会、日本の将来について考え、心配もされていらっしゃいました。

2012年3月の最終講義では、「熱流体工学から社会のための科学へ」というお話をおされ、これまでの研究の総括をおされるとともに、科学に対する社会の期待と、それに応えるべき研究者・技術者の使命について語られました。当日の祝賀会の準備段階で「こういう会は大学人のエゴで行うものだから、学外の人にはあまり宣伝するな」とのご指示があり、OB会を中心に企画しましたが、それでも160名以上の参加者で会場は満員でした。会には、奥様もお二人のお嬢様もおいでになって頂き、参加者一同、楽しいひとときを過ごさせて頂きました。閉会の際のご挨拶では、大学とは違った立場でこれまでの我が国の科学技術の推進に貢献されていただいたことを感謝申し上げました。先生のご無念はいかばかりだったかと存じますが、もとより、これまでのご恩をお返しできる筈もないと思っていましたが、西脇先生、平田先生、笠木先生と続いてきた熱流体研究室がどこに向かって行くかを見て頂くこともできません。笠木先生の教え子の一人として恥ずかしくないように、また、先生の高い問題意識を忘れずに、これからも精一杯努力していくしかないと思っています。

これまで本当にありがとうございました。ずっと走り続けてこられた先生ですので、どうぞ安らかにお眠り下さい。

笠木先生は、国内はもとより海外にも研究を通じた親しい友人が大勢いらっしゃり、訃報を知った多くの方々からお悔やみのメールを頂きました。研究室に長期滞在させて交流を深められた方のうち、Sanjoy Banerjee教授（1996年に滞在、当時University of California, Santa Barbara、現The City University of New York）、Michel Leschziner教授（2006年に滞在、Imperial College London）から追悼文を頂きましたので、この紙面にてご紹介させて頂きます。

伝熱　2016年1月 - 4 - J. HTSJ, Vol. 55, No. 230
To the memory of Professor Nobuhide Kasagi

Professor Nobu Kasagi’s unexpected passing is a great sorrow and loss to all of us who have known him. He was a truly fine human being, as well as a great engineering scientist, widely recognized for his many accomplishments. For his family to whom he was very close, we convey our deepest sympathies and condolences.

Though I had met Nobu on many previous occasions, the first time I got to know him well was at the 1995 International Conference on Multiphase Flow in Kyoto. An event of note was some rather raucous singing by the French contingent, notably Olivier Simonin that Nobu and I both enjoyed together. At that time Nobu, perhaps bemused by the cacophonous vocalizations, asked if I would be interested in spending a year in the Mechanical Engineering Department at the University of Tokyo as the Mitsubishi (Visiting) Professor. As we shared many common interests, such as turbulence structures interacting with deformable boundaries, I accepted with alacrity. So it was that I spent four months of my sabbatical from UC Santa Barbara at Tokyo in the Fall of 1996, working much harder than I had ever anticipated under Nobu’s benevolent but eagle eye, which of course was a mark of the greatness of the man.

The time in Tokyo hosted by Nobu was one of the most enjoyable periods of my life. He was, as is well known, a gentleman in the best sense of the word. He was warm but always correct, welcoming but never effusive, solicitous of one’s needs but never overwhelming and one of the most intellectually stimulating people I have worked with. His laboratory was an engine of unusual productivity and distinction, which the scholars he mentored nonetheless stashed with whiskey among the scientific paraphernalia- much appreciated by several of my visiting PhD students. He kept an unrelenting schedule himself, expecting others to work long hours with the same selfless devotion as his. But after work he would some times go out to sing karaoke with us and all our cares would fall away. Needless to say Nobu had a very fine voice!

There are many things I remember well about Nobu’s persona. One of these was that he was meticulous and had the kindness and foresight to deal with even the most apparently trivial but essential details. When I first arrived in Tokyo, not only had he arranged for where I was to stay, but had even arranged for a personal stamp in Kanji so I could access a bank account. Another time, when my family, who had stayed on in Santa Barbara, was visiting Tokyo we all went to his laboratory at the university. The complex equipment bewildered my daughter who was five at that time but Nobu of course had toys for her to explain the chaotic nature of turbulence, including a double pendulum, which exhibited chaotic behavior! There is a picture somewhere in our archives, which illustrates this occasion.

Over the years, Nobu and I kept in touch. He was seminal in initiating the symposia on ‘Turbulence and Shear Flow Phenomena’, which have now become a well-known international forum for research in the area. I was the Chair of the first symposium, which was held in Santa Barbara, and it was due to Nobu and John Eaton’s tireless efforts that the conference was so successful that it kicked off an outstanding series. We continued to meet often, either in Japan or in the US. Some years ago, I remember coming into Tokyo with a horribly stiff back and staying at the International House in Roppongi. Nobu and his wife, Hiroko, came to take me to dinner at a nearby restaurant, Enoteca. Nobu was concerned about my physical condition, but as always had a solution. “A bottle of Gevrey Chambertin (a Burgundy)’ he said, ‘will cure it or at least kill the pain much better than a massage’, and of course it did! Nobu was always imperturbable and knew how to deal with a problem, often proposing an out-of-the-box solution.

His kindness and warmth were remarkable, and I will miss him greatly, as will all those who knew him. He will be remembered with affection and respect by those who knew him.

Sanjoy Banerjee
CUNY, Sept. 2015

**
A Personal Tribute to Nobuhide Kasagi

Like many in our community, who were entirely unaware of Nobu’s illness, I received the news of his untimely and tragic death with incredulity, followed by an intense feeling of loss and sadness at a life taken all too early.

Nobu’s astonishing number of scientific, professional and societal achievements, and their lasting impact, stand proudly on their own plinth, and need not be retold and lauded in this personal tribute – save for one exception.

In 2006, Nobu was elected Fellow of the British Royal Academy of Engineering – an especially rare honour granted to foreign nationals. The one-sentence citation required to precede the detailed case for support read as follows:

Distinguished for his outstandingly innovative research contributions to engineering science and technology, covering a broad range of fundamental topics and applications; for his outstanding leadership role in Japan's mechanical engineering community - most notably, as President Elect of JSME and leader of Japan's premier 21st Century Center-of-Excellence Program on Mechanical Systems Innovation ; and his wholly exceptional dedication to building bridges between Japan's engineering profession and the international community.

What else need one say about this supreme academic professional who was dedicated to the promotion and exploitation of engineering science, to rearing and fostering the next generation of Japan’s scientists, engineers and university academics, and to making Japan’s engineering community a natural constituent in the global science and engineering fabric?

My closest and most rewarding interaction with Nobu came in 2006, when I had the privilege and pleasure of spending a 9-month sabbatical period in the legendary “Kasagi Laboratory” at Tokyo Daigaku. I shall always remain grateful to Nobu for his decisive role in securing the JSPS Senior Fellowship that supported my visit, and also for being a supremely meticulous and generous host. Attending dozens of informal seminars given by his students, and participating in outings and social “drinking-and-eating” gatherings, with Nobu almost invariably present and fully engaged, made it obvious to me why he was so admired and liked by his junior collaborators and students: it was not simply his supreme command of the science being researched, his global stature and prominent position in Japanese society, but his impeccable politeness, his tendency to listen patiently and with total attention before giving thoughtful and constructive feedback and guidance, and the charm he
exuded, curiously contrasting a somewhat patrician presence that comes with being a member of the national elite. I will admit to leaving Tokyo rather humbled by his admirable leadership qualities.

During my time in Tokyo, and at gatherings in various locations in Japan and abroad, I gleaned a little of Nobu’s qualities as a private individual – generosity and graciousness being at the top of my list. My wife, Freda, and I had the pleasure of sharing with Nobu and his vivacious and charming wife, Hiroko, a good number of excellent French and Italian meals – although I shall also cherish the many down-to-earth lunches we had in a simple, small noodle restaurant just outside Tokyo Daigaku.

Strong self-control was a major fix-point in Nobu’s character. On one occasion, when Nobu and Hiroko visited us in our Central London apartment, Hiroko forgot her handbag in the taxi that brought them to us. Naturally, Hiroko displayed at least a modicum of concern (my wife would have been in sheer, unadulterated panic). Not so Nobu: calm and composure personified. Somehow, Nobu was confident the handbag would be returned – and, of course, it was, entirely as Nobu predicted.

Nobu was an intensely private individual, and he would probably forgive me for intimating that he rarely “let his hair down”, at least in my presence. Even after several glasses of good French or Italian wine, he tended to remain rather serious, controlled and reflective. Our conversations rarely ventured into the realm of his private life – although I know that he was intensely proud of his two successful daughters. Our conversations usually revolved – or ended up revolving - around his concerns about Japan’s role on the world stage, about its long-term ability to compete, as a manufacturing nation, with China, and about the impact of globalisation on the outlook and changing lifestyle of Japan’s young generation. His pre-occupation with these profound national questions, even in the most informal of social settings, characterized a man who saw his life as a mission to improve the lot of Japan and mankind as a whole.

May he rest in peace and look benignly upon our inadequate efforts to build on his legacy.

Michael Leschziner
Imperial College London, Sept. 2015
いうまでもなく、東日本大震災以降、エネルギーは国民の最大関心事である。エネルギーを語るとき、我々の生活への直接的な影響だけでなく、自給率5%まで落ち込んだ我が国のエネルギーセキュリティ、エネルギー価格上昇による国内産業への影響などを考えなければならず、科学あるいは工学だけの議論で閉じることはできない。

平成27年7月に策定された長期エネルギー需給見通し[1]では、年1.7%の経済成長を想定しながらも、今後の技術革新による省エネによって2030年度には13%のエネルギー需要抑制、17%の電力需要抑制を見込んでいる。この時期半割合、再生エネルギー9~20%、原子力17~18%としている。また、その目標に向かうため、再生可能エネルギー、熱利用、二酸化炭素回収・貯留、高効率火力発電、原子力発電、コージェネレーションなど、流通（電力貯蔵、超伝導送電）、水素、消費（産業・家庭・運輸部門、蓄熱・断熱技術、エネルギーマネジメントなど）からなるロードマップ[2]も作成されている。

本学会に所属する多くの方々は、このような流れの中で、エネルギーに係わる様々な研究開発に取り組んでいるものと推察する。しかしそのエネルギーと経済の深い関係を考えると、エネルギーの変換・貯蔵・輸送などに伴うコストは極めて重要であり、この流れに直接的に貢献できる即効性ある選択肢はそれほど多いわけではない。

一方、エネルギーでも、「付加価値の高いエネルギー」という概念が存在する。大容量・低価格のグリッド電力に対して、はるかに単価が高いが、持ち運びができていつでも使える電池はその代表格である。最近では、ウエアラブルデバイスや無線センサの持続電源のために、環境の振動・熱・電磁波などから発電する、エネルギー・ハーベストング[3]に注目されているが、これも高付加価値のエネルギー源の1つである。高付加価値のエネルギー源では、材料、加工技術などにコスト的な制約が少ないため、選択しうるアプリケーションはグリッド電力に比べると遙かに広い。高付加価値エネルギーを出口としてスタートした幾つかの手法が、将来的には大化けしてグリッド電力にも貢献する技術として成長することを期待したい。

このような背景のもと、本特集では、エネルギー分野の中でも「新しいエネルギー変換」に焦点を絞り、新進気鋭の5名の先生方にご寄稿を頂いた。塩見淳一郎先生（東京大学）は分子レベルからの材料設計と新しい熱電材料への展開、桜井篤先生（新潟大学）はメタマテリアルによる新しい熱ふく射制御、中村寿先生（東北大学）は水素キャリアとしてのアンモニアとその燃焼機構解明、村上陽一郎先生（東京工業大学）は非コヒーレント光を短波長化する光学コンバージョン技術、津島将司先生（大阪大学）にはエネルギー貯蔵に有効と考えられるリードクラフ溶融電池内の反応輸送現象について、それぞれ判りやすく、また極めて興味深い解説をして頂いた。

我が日本伝熱学会の強みは、今回のエネルギー関連の最先端研究に係わらず、研究の間口の広さと個々の質の高さであると考えている。本学会の特定推進研究[4]でも、エネルギーに関する新しいアプリケーションが様々な議論されている。今回の特集が諸兄の今後の研究の参考になれば幸いである。

参考文献
フォノンエンジニアリングによる熱電材料の開発

Development of Thermoelectric Materials by Phonon Engineering

塚見 淳一郎（東京大学）
Junichiro Shiomi (University of Tokyo)
e-mail: shiomi@photon.t.u-tokyo.ac.jp

1. 熱電変換材料

$$\eta = \frac{\eta_i \frac{1+ZT}{1+ZT} - 1}{\frac{1+ZT}{1+ZT} + C/T_H}$$

ここで，T_H，T_C，T はそれぞれ材料の高温側温度，低温側温度，平均温度である。従って，材料の変換効率は無次元性能指数 ZT によって一意に決まる。ZT は $S^2\sigma T/(\kappa_e + \kappa_ph)$ で与えられる材料固有の物性であり，S はゼーベック係数，σ は電気伝導率，κ_e は電子熱伝導率，κ_ph は格子（フォノン）熱伝導率である。すなわち，変換効率の向上のためには，使用環境の温度域において S と σ が大きくて，κ_e と κ_ph が小さい材料が必要となる。しかし，一般的に S と σ は負の相間を有することが多く，また σ と κ_e は同じキャリアによって輸送される量であるため正の相関を有し，一筋縄では行かない。

それに対して，近年，原理原則にとづいて構造や材料を設計することで，熱電物性を制御する研究が発展している。その中で著者らはフォノン輸送の理解にとづいてナノ構造化材料を設計・開発するフォノンエンジニアリング研究を進めており，本稿では，それらの概要を紹介する。

2. ナノ構造化材料の熱電性能

ZT の向上を目指した材料研究の熱電素子の歴史は古く，1990年頃に Dresselhaus ら[8]が量子井戸構造で量子閉じ込め効果によって熱電物性を向上させることを理論的に予測し，実験的に確認したことをきっかけに，極薄膜，量子ドットなどのナノ構造の熱電性能の研究が広く行われるようになった。ナノ構造は比表面積が大きいことから，フォノン熱伝導率を低減することも考えられ，ナノ構造化の選択肢を増やすことにもなり，ナノ構造を用いた大幅な性能向上が期待されている。

ナノ構造の熱電性能の研究は2つに大別できる。1つは，量子閉じ込め効果や周期性の効果を発現するためにナノ構造を厳密に制御した研究である（エピタキシャル成長やリソグラフィ加工などを行う研究）[9,10]。もう1つは実用を念頭に制御性とスケールアップ性をバランスさせた研究（ポールミル，焼結などを用いた研究[11,12]）である。

前者は，量子閉じ込め効果に加えて，周期構造で生じるフォノン波の干渉効果によってフォノン輸送を阻害するなどの，新しい物理現象の発現による性能向上が期待される（8節で説明する）。一方，後者は実用化に直結するバルク材料の性能向上に大きく貢献してきた。これらの多くは，ナノ構造界面でのフォノン散乱を利用して熱伝導率を低減することを狙ったものであり，厳密に構造を制御する必要は必ずしもない。つまり，サイズや方向に分布を有するナノ構造から成るバルク材料でも良いことになり，より簡便・安価な製造方法が適用できる。以上を背景に，近年，様々な形態のナノ構造化バルク材料の研究が盛んに行われ
ており、実験室レベルでは、例えば、鉛カルコゲナイド系の材料をナノ構造化することで、ZTが2を超えるバルク材料も出ている[12]。

3. ナノ構造化材料のフォノン輸送

ここで、ナノ構造による熱伝導率の低減機構をフォノン気体運動論の観点から説明する。図1はナノスケールの結晶が粒界を隔てて接合しているナノ多結晶体を模擬している。図1(a)のように、粒径がフォノン平均自由行程よりも十分に大きい場合は、フォノンは界面に達する前に他のフォノンに散乱されるので（拡散フォノン輸送）、粒内の熱伝導率は単結晶のそれと同じと考えることができる。一方で、図1(b)のように、粒径がフォノン平均自由行程よりも十分小さい場合は、フォノンは他のフォノンには散乱されずに（弾道フォノン輸送）界面を通って散乱されないため平均自由行程は粒径で制限され、粒内の熱伝導率は単結晶のそれよりも小さくなる。

これは伝導率の（古典的）サイズ効果と呼ばれ、ボルツマンガスモデルでよく議論されるコンセプトである。半導体の電子の平均自由行程は一般にフォノンのそれよりも小さいため、粒径を電子の平均自由行程よりも大きく保つと、フォノンの輸送を選択的に阻害でき、電気伝導を熱伝導率にせずに、熱伝導率を低減できる。

以上の考え方はシンプルで良いが、実際には、フォノンの平均自由行程はフォノンの周波数、波数、偏向によって大きく異なるため、図1(c)のように拡散フォノンと弾道フォノンが混在した「準弾道輸送」となる。従って、フォノン輸送の視点からナノ構造内の熱輸送を考える際には、このような強いマルチスケール性を考慮する必要がある。

4. フォノンエンジニアリング

東京大学・熱エネルギー工学研究室[14]では、フォノン輸送の科学から得られた材料の設計指針をもとに材料開発を行うフォノンエンジニアリングを実践するべく、理論・数値解析、物性計測、構造作製の3つの体を一体としたアプローチによる研究を進めてきた。材料の熱伝導率を計算・測定し、構造との関連から得られる設計指針をもとに材料を作製する「大視的な練成」は従来から行われているが、ここではそれに加えて、3つのアプローチをフォノン輸送物性のレベルで練成する「微視的な練成」を行う点が特徴的である（図2）。例えば、測定においては単に熱伝導率を測定するのではなく、フォノンのモードに依存した熱伝導率（熱伝導スペクトル）を測定し、理論・数値解析との微視的な整合性を確認しながら研究を進める。また、構造作製においては、界面と内部の効果を分離できるモデル試料を作製し、界面原子構造による熱伝導の制御性を明らかにしながら研究を進め、これらによって、より原理原則にもとづく形でフォノンエンジニアリングが行えるようになっ
5. フォノン輸送の理論・数値解析技術

ナノ構造材料内のマルチスケールなフォノン輸送とそれによって決定される実効的な熱伝導率を計算するには、ある程度大規模な計算が必要となる。一方で、熱伝導率の値は性能指数に敏感に影響するため、高い計算精度が要求される。そこで我々は、第一原理計算を出発点としたマルチスケール・フォノン輸送解析法を開発してきた。手法のフローチャートを図3に示す。まず、密度汎関数理論を用いた第一原理計算によって原子間力定数を求める。これをもとに、純結晶系であれば非調和原子間力定数を用いて、合金系であれば分子動力学法を用いてフォノンの緩和時間を計算する。分子動力学法は相対的にノイズが大きい反面、実空間解析法であることから非均一系を取り扱いやすい利点がある。次に、得られたフォノン輸送物性を入手として、緩和時間近似のもとでフォノン・ボルツマン方程式をモンテカルロ法によって解く。モンテカルロ法を用いることによって、実際の熱電材料に見られるような複雑な界面形状に対応することができると同時に、界面でのフォノンの透過・反射率を確率論的に導入することが可能である。なお、原理的にはさらに高次のIFCまで考慮することが可能であるが、3次または4次までの項まで含めるのが一般的である。

計算されたIFCから熱伝導率を計算する方法はいくつかあるが、単結晶の場合は一般に格子動力学法を用いて行われる。まず、調和IFCから、ダイナミカル・マトリックスを通して、フォノンの分岐関数を計算する。これをもとに、第一ブリリアンゾーン内の任意の波数ベクトルkにおけるフォノン群速度v_{ks}が求まる。次に、フェルミ黄金律にもとづきフォノンの生成及び消滅の確率を通じて3-フォノン散乱過程による緩和時間を計算する。なお、フォノン・フォノン散乱過程では、結晶の内部熱抵抗に第二義的に寄与する1次3-フォノン散乱過程のみを取り扱えば十分であることが多い。

最後にフォノン気体のボルツマン方程式を緩和時間近似のもとで解くことによって熱伝導率を求めめる。

\[\kappa_{ph} = \frac{1}{3\pi} \sum_{\mathbf{v}_k} C_{\mathbf{k}} |\mathbf{v}_k|^2 \tau_{\mathbf{k}} = \frac{1}{3\pi} \sum_{\mathbf{v}_k} C_{\mathbf{k}} |\mathbf{v}_k| \Lambda_{\mathbf{k}} \]

ここで、Cはボーズ・アンサンブル統計に基づくフォノンモード(v_k)あたりの熱容率、Aは平均自由行程、Vは結晶の体積である。
以上の計算で得られる格子熱伝導率の温度依存性は実験での測値と良く一致することが確認されている[19]。加えて、式(3)によってフォノンモードごとの熱伝導能が求めることで、どのモードがどの程度熱伝導率に寄与しているか（熱伝導スペクトル）を知ることができる。図4は熱伝導率への寄与をフォノン平均自由行程が小さいものから累積した「累積熱伝導率」である[20]。これをを使ってナノ構造化した際の潜在的な熱伝導率の低減効果を概算することもできる[21]。

以上ののような第一原理にもとづく単結晶の熱伝導率計算は、最近では広く行われるようになっており、それらを実装したソフトも複数公開されている[22-24]。正確な計算を行うにはある程度の知識と経験が必要ではあるが、専門家でなくても計算が行うことができるようになっている。

5.2 ナノ構造化材料の計算

以上の単結晶の計算を、ナノ構造化材料の計算に織り込む。分子動力学法によって直接的にナノ構造を計算することも原理的には可能であるが、特に3次元材料（例えば粒径が数十ナノメートルの多結晶）については、計算負荷が大き過ぎる。そこで、我々は単結晶計算から得られたフォノン輸送計算をもとに、フォノン気体のボルツマン輸送方程式を解くことでナノ構造化材料の計算を行っている。ボルツマン方程式の解法はいろいろあるが、ここでは図1のような複雑な界面形状を有する系の解析に適用しているモンテカルロ法を用いた解法[25-27]を概説する。

フォノン輸送に関しては、以下の線形時間で線形化されたボルツマン輸送方程式が用いられることが多い。

\[
\frac{\partial f_i(\omega, \mathbf{r})}{\partial t} + v_i(\omega) \cdot \nabla \cdot f_i(\omega, \mathbf{r}) = \frac{f_i(\omega, \mathbf{r}) - f_i(\omega, \mathbf{r}, T)}{\tau_i(\omega, T)}
\]

ここで、\(f_0(\omega) \)は分布関数、\(f_0 \)はボーズ・アインシュタイン分布関数、\(e \)はフォノンの伝播方向の単位ベクトルである。これに5.1節で求めた群速度と緩和時間を入力することによって、第一原理に基づいた計算が可能となる。なお、ここでは簡単のために、波数依存性を（分散関係より）周波数依存性に置き換えて記述している。線形化を行わず、格子運動方程式を用いて右辺の衝突項を厳密に表して解く方法もあるが、フォノン輸送の計算の場合は一部の材料を除いて緩和時間近似が妥当であるとされる。この場合、フォノンはそれぞれの群速度に従って移流するとともに、ナノ結晶内部でのフォノン散乱によって散乱確率

\[P(\Delta t, \tau(\omega)) \]

で散乱する。ここで\(\Delta t \)は時間ステップである。実際の計算においては、フォノンが散乱する度に、その全ての状態（周波数、偏向、群速度、方向）を局所温度に対応する平衡分布に従ってリセットする。

また、分布関数を解くのではなく、系の片面からフォノンを1つずつ「打ち込んで」反対の面に透過する確率（透過確率 \(T \)）を計算することで熱伝導率を求める「レイトレーシング法」的な手法も開発している[28]。この場合の熱伝導率はLandauerの公式

\[
\kappa_{\text{sh}} = \frac{3}{2} \sum_{k_s} C_{k_s} v_{k_s} \int_0^{\pi/2} T(x, \theta) \cos \theta \sin \theta d\theta
\]

で与えられる。

フォノン・フォノン散乱（やその他の内部散乱）と界面散乱（界面散乱層と仮定すれば、計算はさらに簡便になる。まず、内部散乱を無視してレイトレーシング法を行い、得られる\(T \)をもとに界面散乱過程に対する平均自由行程を計算する。

\[
\Lambda_{\text{int}} = \frac{3}{2} \int_0^{\pi/2} T(x, \theta) \cos \theta \sin \theta d\theta
\]

次に、Matthiessen則を用いて内部散乱による平均自由行程\(\Lambda_{\text{int}} \)と組み合わせて、全体の平均自由行程を求めめる。

\[
\Lambda_{\text{int}} \Lambda_{\text{bd}} = \Lambda_{\text{int}} \Lambda_{\text{bd}} + \Lambda_{\text{int}} \Lambda_{\text{bd}}
\]
そして、これを式(3)に代入すれば熱伝導率を計算することができる。この手法には、先のボルツマン輸送方程式を解く手法と比較して計算付加を大幅に軽減できるメリットがある。

いずれの手法においても、界面に到達したフォノンは界面通過確率に従って反射または透過する。この界面通過確率は、IFCをもとに非平衡グリーン関数法[29]、格子動力学法[30]、Wave packet法[31]、非平衡分子動力学法[32,33]などによって計算することができる。しかし、そのためには界面の原子構造を決定する必要があり、結晶相関を形成する実際の界面は多様であることを考慮すると、現時点では、界面通過確率はパラメータとして扱うのが妥当であると考える。ただし、界面通過確率は周波数の関数であるため、スカラー量で表す工夫が必要である。

そのために、一般的な界面通過確率の周波数依存性を踏まえて、界面透過関数をモデル式,

\[t(\omega) = \left(\frac{\gamma \omega}{\omega_{\text{max}} + 1} \right)^{-1} \]

で表すと、定数 \(\gamma \) によって界面熱コンダクタンスが一意に決まる（その逆も真）。つまり、界面熱コンダクタンスをパラメータとすれば、それによって一意に決まる界面透過確率を入力としてモンテカルロ計算を行うことで、ナノ構造材料の熱伝導率が求まる。

このようなにして計算した、シリコン(Si)ナノ多結晶体（図5(a)）の熱伝導率の粒径および界面熱コンダクタンスへの依存性を図5(b)に示す。これから、平均粒径を20 nm、界面熱コンダクタンスを100Wm\(^{-2}\)K\(^{-1}\)にできれば、熱伝導率をアモルファスSiの値よりも小さくできることがわかる。なお、粒径分布の標準偏差0.35まで広げて計算した結果、平均粒径が同じであれば、分布の広がりは熱伝導率に殆ど影響しないことがわかっている[28]。

6. フォノン輸送物性の計測技術
6.1 単結晶のフォノン輸送物性

以上のように、第一原理にもとづくフォノン輸送の計算技術が発展すると同時に、実験によるフォノン輸送特性の計測技術も発展している。フォノンの分散関係は従来から非弾性中性子散乱分光[34]や非弾性X線散乱分光[35]を用いて計測されてきた。近年ではそれらの解像度が向上し、分散関係に加えて、スペクトルピークの線幅や形状からフォノンの寿命（または緩和時間）を見積もることができるようになってきている。例えば、結晶構造がシンプル（対称性が高い）であるにも関わらず熱伝導率が非常に低いことで知られるPbTeの研究では、非弾性中性子散乱実験[36]と第一原理フォノン輸送計算[37]の結果を直接比較して、特定のモードの強い非調和性を明らかにすることで、熱伝導率が低くなる機構を説明している。最近では、フェムト秒のX線自由電子レーザーを用いた時間領域での過渡的な計測も実現されており[38]、今後の発展が楽しみである。

また、最近、特に発展しているのが、熱伝導率のサイズ効果の計測から平均自由行程を見積もる手法である。主にサーモミリフレクタンス法を用いて、レーザーのスポット径を変えるなどして加熱領域をフォノンの平均自由行程より小さくするこ
6.2 界面原子構造と熱コンダクタンスの相関測定

前述のように、界面構造が決定すれば界面熱コンダクタンスや界面フォノン透過率を計算することは可能であるが、実際に作製される材料の界面構造（物理的および化学的）は作製法やプロセス条件（温度、圧力、表面科学処理など）に強く依存するので、適宜、実験的な計測を交えて解析する方が良い。しかし、例えば放電プラズマ焼結によって作製された図5のようなSi多結晶体の界面だけを抽出して界面熱コンダクタンスを計測することは至難の業である。そこで我々は、平面Si層同士を焼結によって接合することで、多結晶体のSi-Si界面を模擬したモデル界面を作製し、時間領域サーモリフレクタンス（Time Domain Thermoreflectance, TDTR）法[42]によって界面熱コンダクタンスに関する知見を得る技術を開発した。

TDTR法は試料表面に堆積した金属層をポンプレーザーで加熱し、温度に依存して変化する表面反射率をプローブレーザーで計測することによって表面温度の応答を計測し、熱伝導方程式などの物理モデルをフィッティングすることによって、試料の熱物性を同定する手法である。ただし、TDTR法で計測するためには、試料がいくつかの用件を満たす必要がある。まず、TDTR法は熱流透深さ（約数μm）の範囲内の物性のみ測定可能であるため、図6(a)のように表面側のSi層は薄膜である必要がある。さらに、物理モデルとの整合性を担保するために、Si薄膜層は厚さや厚さ、平幅化を高精度で制御する必要がある。本手法ではSOI基板やSi基板を接合に利用することできらの要件を満たした。SOI基板は、Si薄膜/SiO2薄膜/Si基板の2層構造を有し、各層の厚さおよび厚さが一定である。SOI基板のSi薄膜側とSi基板をプラズマ焼結によって接合した後に、SOI基板のSi支持基板とSiO2薄膜を選択的エッチングによって除去することで所望の構造が得られる。

この手法を用いて、焼結温度や圧力、焼結前後の表面化学処理の方法、結晶方位などを変えながら試料を作製することで、実際に材料で起こる様々な界面構造を作り分けることができる。図6(b)に得られた界面構造のTEM像と計測された界面熱コンダクタンスの関係を示す。例えば、ある程度低温で焼結すると、表面に残存した自然酸化膜が拡散して界面近傍にSiOxナノ粒子（xは数%）として析出することで、界面熱コンダクタンスを大きく低減することが見取れる。ナノ粒子が存在しない箇所は結合が連続していることから、電気伝導は酸化膜をを通して高輝度で伝導すると、表面に残存した自然酸化膜が拡散して界面近傍にSiOxナノ粒子（xは数%）として析出することで、界面熱コンダクタンスを大きく低減することが見取れる。ナノ粒子が存在しない箇所は結合が連続していることから、電気伝導は酸化膜をを通して高輝度で伝導すると、表面に残存した自然酸化膜が拡散して界面近傍にSiOxナノ粒子（xは数%）として析出することで、界面熱コンダクタンスを大きく低減することが見取れる。ナノ粒子が存在しない箇所は結合が連続していることから、電気伝導は酸化膜をを通して高輝度で伝導すると、表面に残存した自然酸化膜が拡散して界面近傍にSiOxナノ粒子（xは数%）として析出することで、界面熱コンダクタンスを大きく低減することが見取れる。
結中に粒子表面の酸化層が流動的に移動・凝集して形成されたと考えられる。Siナノ多結晶相の平均粒径は、焼結によって粒成長した結果、30 nm程度であった。

得られた材料の熱伝導率はナノ構造化とSiO相の混入により先行研究[47-49]の半分程度まで低減された。一方、パワーファクター（$S^2\sigma$）は先行研究より若干小さい程度に収まった。これによってZTは最大で850°CにおいてZT=0.58を示し、これまでのPECVDを用いた先行研究[48, 49]に比べ25%程度向上した。また、600°CまでのZTはナノ構造化バルクSi熱電材料のチャンピオンデータ[47]と同等となった。

以上によって、熱伝導率の低減により熱電性能

図7 Siナノ構造化バルク材料の熱電特性
が向上したが、目標の $ZT=1$ にはまだ及ばない。また、実用を考えると、より低温での性能向上が望まれる。6.2 節の解析結果から、特に粒径を小さくし、界面構造を精密に制御することで熱伝導率をアモルファス Si の値まで低減できる可能性が示されており、これらの実現が直近の課題となっている。

8. まとめと今後の展開
本稿では、マルチスケールにフォノン輸送を解析する技術とモデル試料を作製して界面フォノン輸送を計測する技術を組み合わせ、「フォノンエンジニアリング」によって、熱電変換材料を開発する研究を概説した。このようなアプローチによって、熱電材料を原理原則にもとづいて設計することで、経験的なアプローチでは難しいレベルでの性能向上やコストダウンを実現できればと考える。なお、ここでは紹介したフォノン粒子の運動論にもとづくマルチスケール・フォノン輸送解析ツールについては、汎用性のあるソフトウェアとするべく、インターフェースを整備しているところである。

本稿ではフォノンの粒子性を利用した研究を中心に紹介したが、近年研究例が増えているフォノンの波動性を利用した熱流制御に関しても研究を進めている。ここで、フォノン波の干涉による制御法のコンセプトを簡単に説明する。図8のような格子構造において、界面がフォノンを鏡面反射するときは、界面の間隔とフォノンの位相の関係によって進行波と反射波が干渉して、波が存在できなくなる。これは波数空間で考えると、単位胞が大きくなることでブリルアンゾーンが折り畳まれ、分散関係（フォノンバンド）にギャップが生じることと同様である。なお、ギャップによって特定のフォノンが存在できなくなるだけでなく、その上のバンドの分散が小さくなることで、フォノンの群速度が小さくなることも熱伝導率の低減に寄与する。

これらの理解が進み、それにともなって設計されたナノ界面構造が作製できるようになれば、フォノン輸送をより精密に制御（例えばバンドパス制御など）することができるようになり、電子、スピイン、マグノンなどの他の準粒子との独立制御性が向上することが期待される。これは従来型の熱電変換材料はもとより、スピンゼーベック効果を用いた新しい機構の熱電変換の性能向上にも繋がる。

謝辞
本稿で紹介した研究は、東京大学・熟エネルギー研究室の、志賀拓麿助教、堀琢磨、小宅教文、村上拓、坂田昌則、三浦飛鳥、明戸大介、野村政宏准教授、Keivan Esfarjani 教授、野村政宏准教授、Chris Dames 准教授、Olivier Delaire 先生にも謝意を表す。これらの研究の多くは、戦略的創造研究推進事業（さきがけ）および科学研究費助成事業（若手研究（A））の支援を受けて行われた。

参考文献
es-office-waste-heat-recovery（DOE ホームページ）

[22]ShengBTE (http://www.shengbte.org/)
[23]ALAMODE(http://alamode.readthedocs.org/en/latest/)

1. はじめに

ふく射（輻射）とは、車の輻（や=スポーク）のように一点からエネルギー・光、粒子が放射される現象、あるいは放射されるものの総称である[1]。ふく射は光（電磁波）であり、特に光の内部エネルギーにより放射される光が熱ふく射である。

さて、その熱ふく射の研究であるが、歴史は古く今から100年以上前に熱ふく射エネルギーは温度の4乗に比例するという Stefan-Boltzmann の法則が発見され、その後 Max Planck が黒体放射エネルギーの式を導き、それが量子力学の先駆けとなったと言われている。そのような歴史の中で、現代では熱ふく射の基礎研究は成熟したように思わせた時代があったかもしれない。しかし近年、熱ふく射の研究はナノテクノロジーとの邂逅によって新たな現象が次々と発見され、Nature や Science といった有名雑誌に登場する機会が確実に増えている。

そのブレークスルーのきっかけとなったのは London Imperial College の理論物理学者 John Pendry によるメタマテリアルの研究であろう[4]。メタマテリアルとは、サブ波長サイズの構造体によって光を制御し、自然界には存在しない新しい光学特性を持つ材料のことである。ナノフォトニクスの分野でも、光の回折制限を遥かに凌駕するパーフェクトレンズの研究[5]や、物質に入射する光を自由に曲げて透明化させる技術（クローキング）[6]といったホットな話題には事欠かない。

さて、このように光を自由に操れるならば、熱ふく射でもさも同じようにコントロールすることが可能である。メタマテリアルを用いることで熱ふく射を任意の波長帯で吸収・放射させることができるが、かつそのスペクトル幅や偏光といった物性までも自由自在に制御できることになる。これによって熱ふく射制御の自由度が飛躍的に向上することになり、ふく射伝熱現象に関わる様々な分野において幅広い応用が期待できる。

本稿では、メタマテリアルを用いた熱ふく射制御とそのエネルギー変換に関する研究を紹介する。前半部は、ナノ構造の大面積化を目指した自己組織化ナノ粒子アレイによる波長選択的太陽光吸収材料について紹介する。後半部では波長選択的熱ふく射エミッターに関して、その放射のメカニズムについて述べ、さらに応用例として太陽熱光起電力発電と波長制御赤外線ヒーターに関する研究を紹介する。

2. 波長選択的太陽光吸収材料

近年、再生可能エネルギー社会を実現するために、太陽エネルギー利用の研究は一段と重要性が高まっている。太陽エネルギーの利用技術としては太陽光発電が一般にも普及し、各地にメガソーラーが建設されている。一方、日本ではあまり馴染みはなく、太陽光資源の豊富な南ヨーロッパやアメリカ西海岸などでは太陽熱発電も既に十万世帯以上の電力を賄えるほど発展している。その太陽熱利用であるが、次世代技術として後述する太陽熱光起電力発電[7-9]が注目されている。

これらの技術において鍵となるのは太陽光を吸収して熱エネルギーに変換するための波長選択的太陽光吸収材料である。理想的な太陽光吸収材料は、太陽エネルギー[10]のうち多くを占める可視－近赤外波長領域の光を完全に吸収する一方で、熱ふく射として周囲環境に捨てられてしまう赤外領域の光については全く放射しないといった波長選択特性が求められる（Fig. 1）。著者らは、これまでにタンゲステンナノ粒子と SiO2 を混合したサーメット多層膜構造に着目し、広帯域ふく射吸収特性を持つ波長選択性太陽光吸収材料を特性マトリックス法による電磁波解析と遺伝アルゴリズムにより最適設計を行っている[11]。
一方、サーメット型の太陽光選択吸収材は金属ナノ粒子が誘電体中にランダムに分散しているため、光吸収メカニズムが複雑であり、そのため制御が難しいという問題があった。そこで我々は、金属ナノ粒子アレイを用いた太陽光吸収材料に着目した[12]。誘電体中に金属ナノ粒子を周期的に配列することで、より単純な系で光吸収メカニズムを明らかに出来ることに加え、波長制御をより効率的に行うことが出来る。

Fig.2に金属ナノ粒子アレイによる太陽光吸収材料の模式図を示す。まず、Fig.2(a)はタングステンナノ粒子（直径40nm）を周期50nmでタングステン基板上に整列させたもので、Fig.2(b)はそれをSiO₂層（厚さ100nm）でコーティングしたものである。実際にはナノ粒子間のギャップを制御することは非常に難しいため、コアシェル型のナノ粒子を自己組織的に配列することが有効である。Fig.2(c)はタングステンナノ粒子を5nmのSiO₂シェルで覆ったものであり、Fig.2(d)はさらにそれをSiO₂層でコーティングしたものである（実際はシェルと共に層の屈折率が同じであるのでシェルの部分は見えない）。自己組織的に配列する場合には最密充填構造を考慮する必要があるが、ここでは便宜的に単純正方構造として解析する。制御するための計算結果はほぼ同じである。三次元電磁波解析は、FDTD法（Finite Difference Time Domain Method）により行った。解析ソフトウェアにはLumerical（Lumerical solutions, Inc.）を使用している。

計算結果をFig.3に示す。まずタングステン基盤のみの吸収率は可視光領域で0.5ほどである。これはタングステン自身のバンド間遷移による光吸収である。次にタングステンナノ粒子を配列した場合、波長300nm付近でほぼ吸収率1.0を示している（図中(a)）。これは局在プラズモン共鳴によるものと考えられる。局在プラズモン共鳴とは入射電界によって金属ナノ粒子内の自由電子が集団的に一方向に偏り、電気双極子のように振る舞う共鳴状態のことである[13]。さらにSiO₂層でコーティングすると光吸収のスペクトル幅が拡がっていくことがわかる（図中(b)）。この理由の一つとしてSiO₂薄膜による光干渉効果が挙げられる。
ナノ粒子がSiO₂シェルに囲まれているため、局在プラズモンの共鳴波長がシフトするが、この場合も吸収率1.0を示している(図中(c)).この構造にSiO₂薄膜をコーティングした場合も同様に吸収スペクトル幅が拡がっている(図中(d)).吸収ピークが301.9nmと617.5nmがあるので、各々の波長についてコアシェル断面の電磁場分布(入射電場で正規化)を可視化してみると(図4),粒子間のギャップにおいても強い電場の増強が得られていることがわかる。これは各々の粒子による局在プラズモン共鳴が相互作用し、ギャップ間でさらに電磁場が増強されたものと考えられる。このように局在プラズモン共鳴を上手に利用することで可視光領域の光吸収を効率的に制御できる可能性が示唆されている。

3. 波長選択的熱ふく射エミッター

3.1 マグネティックポラリトン

熱ふく射は本来、物質内部における電子や原子核のランダムな相互作用から放射されるもので、極めて広いスペクトルを持つインコヒーレントな光である。しかし、メタマテリアルによって物質内部の電子状態を人工的に制御できれば、熱ふく射を特定の波長だけ放射させることができる。ここで前述したようにプラズモン共鳴という現象は、ナノ構造によって自由電子の集団的振動をコントロールするものであるから、波長選択的熱ふく射エミッターに応用することは理に適っている。このような研究は最近“サーモプラズモンクス”という新たな分野になりつつある[14]。

本稿ではFig.5に示すような金属パターン/誘電体層/金属基盤の三層で構成されたメタマテリアルを紹介する。最上層の金属パターンについては、これまでに正方形型に限らず線状型、十字型、円盤型などといった様々な形状が提案されており、それぞれ特定の波長で光を吸収/放射させることができる。物質の表面を機能化させるわけであるから、このような二次元的なメタマテリアルは特に“メタサーフェス”と呼ばれている。

この特徴的な光吸収/放射メカニズムを説明するために、これまでにいくつかの理論が提案されているが、様々な形状に対して汎用的に適用できる理論はまだ確立されていない。我々は、この共鳴現象を説明するためにマグネティックポラリトン（MP）[15]に着目している。MPとは、Fig.6に示すように入射光の磁界成分によつて上下2枚の金属間において反平行電流が励起され、誘電体層内において強い磁場の増強効果が得られる共鳴現象のことである。これは研究者によって磁気モードや局在プラズモン共鳴など様々な呼び方があり現在でも統一されていないが、磁場の変動により励起された現象であることを明確にするために本稿ではMPと呼ぶ。著者は、ジョージア工科大学のZhuomin Zhang教授と共同研究を行い、MPを上手に利用することで共鳴波長の位置やスペクトル幅といったふく射特性を自由に制御できることを示し、その理論予測法を導き出している[16]。

Fig. 5 メタマテリアルの模式図

Fig. 6 MP による電磁場増強。ベクトルは電場を、コンターは磁場の大きさを示す。

Fig. 7 LC回路モデル

このような研究は今後ますます注目されるところである。
伝熱 学年度:2016年 1月 - 21 - J. HTSJ, Vol. 55, No. 230

属部分をインダクタ(L), 誘電体層をキャパシタ(C)に見立て, LC 共振回路としそれをモデル化するものである。図中の Lm は相互インダクタンス, Lk は電子の運動エネルギーを考慮した力学インダクタンスであり, Cm は平行平板のキャパシタンス, Cs は金属パターン間のギャップにおけるキャパシタンスである。この LC 共振回路の全インピーダンスは次式で表される。

\[Z_{\text{tot}}(\omega) = \frac{L_m + L_k}{1 - \omega^2 C_g (L_m + L_k)} + \frac{2}{\omega^2 C_m} + L_k + L_m \] (1)

ここで \(\omega \) は角周波数である。\(Z_{\text{tot}}(\omega) = 0 \) となる条件で LC 回路は共振状態となるから, その周波数が熱ふく射の共鳴波長ということになる。これにより, 設計者は任意の波長域で熱ふく射を吸収/放射させるために, メタマテリアルの形状や材料の最適な条件を容易に割り出すことができる。

3.2 Solar-TPV への応用

熱ふく射エミッターは, 前述した波長選択的太陽光吸収材料と組み合わせることにより太陽熱光起電力発電 (Solar-Thermophotovoltaic (TPV)) に応用することが可能である。そのコンセプト図を Fig.8 に示す。Solar-TPV 発電システムは, 太陽光吸収材料で太陽エネルギーの全てを一旦熱エネルギーとして変換した後, 熱ふく射エミッターにより光電変換 (PV) セルの高感度領域 (近赤外光領域) に整合した熱ふく射を放射させるものである。一般的な太陽光発電は, 太陽エネルギーのうち可視光のみしか利用できないため, 純接合型太陽電池では変換効率は理論的にも 34% が限界である (Shockley–Queisser Limit)。一方, Solar-TPV 発電システムは, 理想的には太陽エネルギーを一切無駄にしない方法であることから, その変換効率は ほぼカルノー効率に近い 85% の発電効率が期待出来ると予想されている[17]。さらに発送源は太陽光に限らず, 太陽熱電発電と比べるとタービンのような大型の回転機械も必要なく, 静音かつメンテナンスフリーであることをメリットである。

しかしながら, 熱ふく射エミッターは Wien の変位則からも予想できるように, 近赤外光を取り出すためには 1000K 以上の高温で動作させる必要がある。従って高温に耐える材料の問題や, 発電システム全体の熱損失をいかに抑えるかという伝熱学的な問題など解決すべき点は多い。これまで TPV 発電に関連する研究の多くは, 理論, 数値解析によるもので, 実証実験の例はまだ少ない。最近では MIT の研究グループが 3.2%の発電効率を達成して注目を浴びており[7], 今後さらに競争が激しくなると思われる。

我々のグループではメタマテリアルを用いた熱ふく射エミッターを, この Solar-TPV 発電システムに応用することを検討している。前述の設計方法に従って, ダングスチンによるパターンニングと SiO2 層を用いた熱ふく射エミッターの解析を行った結果が Fig.9 である。PV セルにはバンドギャップの小さい InGaAsSb 太陽電池を想定している。この結果では, PV セルの高感度領域である 1.5-2.0 \(\mu m \) 付近に鋭いピークを持つ熱ふく射エミッター（表面温度は 1200K と仮定）が実現可能であることを示している。現在, このメタマテリアルを作製中であり, 近い将来 TPV 発電の実証実験を行う予定である。

3.3 波長制御赤外線ヒーターへの応用

加熱・乾燥プロセスは, 幅広い産業分野において必要な生産プロセスである。その中で赤外線ヒーターは主要な役割を果たしており, 特に発熱性
や爆発性を持つ溶剤の乾燥プロセスについては，乾燥温度の低温化が急務である。溶剤は有機物であるので特定の波長の光を吸収する。そこで蒸発に有効な赤外線だけを選択的に照射できれば，極めて高効率な乾燥プロセスが可能となる。

我々の研究グループは北海道大学の戸谷剛先生，日本ガイシ株式会社との共同研究により，特定の赤外線を放射する技術として，メタマテリアルを用いた熱ふく射エミッターに着目している。本研究で用いる熱ふく射エミッターは，Fig.5と同一構造であり，金属部分には Au を，誘電体層には Al2O3 を使用している。まず LC 回路モデルと FDTD 法による設計では，トルエンの蒸発に有効な波長 6-7 μm 付近の赤外線を放射させるためには，金属パターンの幅は 1.7-1.8 μm になると予想した。北海道大学の実験施設において実際に作製されたものが Fig.10 である。Au はスパッタリングにより成膜され，さらに Al2O3 の成膜には原子層堆積装置（ALD）が用いられている。Au パターンは電子線描画装置による描画とリフトオフにより作製されている。詳しい作製プロセスは参考文献[18]を参照されたい。

Fig. 11 に実験結果と FDTD 法による計算結果を示す。実験での放射率は，Kirchhoff の法則を適用し，積分球を持つ FT-IR によって垂直入射半球放射率が測定されており，一方 FDTD 法での放射率は垂直入射垂直放射率である。いくらかの不確定要素が含まれるものの，両者は概ね良く一致している。w は正方形型の金属パターンの幅であり，1.65μm から 1.80μm に大きくなるに従って，共鳴波長は長波長側にシフトしていくことがわかる。

表 1 に，LC 回路モデルによる共鳴波長の理論予測と測定結果の比較。

<table>
<thead>
<tr>
<th>w (μm)</th>
<th>λLC (μm)</th>
<th>λexp (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>6.13</td>
<td>6.29</td>
</tr>
<tr>
<td>1.70</td>
<td>6.32</td>
<td>6.39</td>
</tr>
<tr>
<td>1.75</td>
<td>6.50</td>
<td>6.54</td>
</tr>
<tr>
<td>1.80</td>
<td>6.69</td>
<td>6.69</td>
</tr>
</tbody>
</table>

測定値と実験による測定結果の比較を示しており，両者は良く一致している。LC 回路モデルによる検討でも共鳴波長の位置は金属パターンの幅に強く依存することがわかれている[15]。また，大きさの異なる金属パターンを複数配置すると，それに対応した複数の共鳴を同時に起こすことも可能であり[19]，溶剤の種類に合わせた熱ふく射の多波長制御も可能である。

4. おわりに

メタマテリアルの研究は歴史も 10 年程度と浅く，次々と新たな知見が報告され，まさに日進月歩の技術である。メタマテリアルのメタは“超越した”という意味で使われており，自然界には存在しない新材料によって光に限らない“波動”が
関わるあらゆる現象に革命を起こすかもしれない。これまでの型にはまらない分野を超えた研究が必要となってきている。東工大の花村克悟先生が主催する「ふく射に関する勉強会」では、異分野の研究者との出会いがあり、また産業界の技術者からは思いもよらない応用方法を提案されることがある。赤外線ヒーターなどはその良い一例である。最近では、東北大の円山重直先生と共同で局在プラズモン加熱を利用したがん治療の研究も始まっており、医療分野への応用も視野に入れている。このようなメタマテリアルを用いた新しい熱ふく射制御が近い将来どんな形で応用されるのか、まだまだ想像もしなかったような使い道が見つかることを期待に胸が膨らむ思いである。

謝辞
共同研究者の北海道大学戸谷剛准教授、ジョージア工科大学Zhuomin Zhang教授、東北大学円山重直教授、九州工業大学宮崎康次教授、日本ガイシ株式会社近藤良夫氏、京セラ株式会社秋山雅英氏、旭化成イーマテリアルズ株式会社山木宏氏に感謝申し上げます。また日頃から学会や研究会等において、多くの先生方や技術者の方々からご指揮と励ましを頂きました。この場をお借りして感謝申し上げます。最後に、これまでの研究成果は当研究室の卒業生と現学生の皆さんの努力の結晶であります。本研究の一部は、科学研究費補助金若手研究(B)(15K17985), 挑戦的萌芽研究(26630069)の援助を受けて行われました。

参考文献
1. はじめに

世界の一次エネルギー供給の約80%は化石燃料に依存しており[1]。化石燃料の消費量と二酸化炭素の排出量の削減を進めるうえで、燃焼過程を含むエネルギー変換機器（ここでは燃焼機器と呼称する）の高効率化を進めることは極めて重要である。短〜中期的には既存の化石燃料を使用しつつ、再生可能エネルギー由来の炭化水素燃料の使用比率を高めながら、燃焼機器のさらなる高効率化と燃料組成変化に対する適合性向上を進めることが、大きな方針の一つとなる。二酸化炭素の排出量を一段と削減する観点からも、再生可能エネルギー由来の水素燃料の使用比率を高めることが重要である。再生可能エネルギーの単位面積あたりのエネルギー密度が低いことから、海外の再生可能エネルギーを利用して燃料を製造・貯蔵し、我が国に輸送・貯蔵したうえで利用することも考えられる。再生可能エネルギーによる大規模な燃料生成を実現するためには、その生成過程を飛躍的に改善する必要があり、そのために研究開発の必要性は論を待たない。一方で、我が国の国土が狭いことと、再生可能エネルギーの単位面積あたりのエネルギー密度が低いことを考慮すれば、海外の再生可能エネルギーを利用して燃料を製造・貯蔵し、我が国に輸送・貯蔵したうえで利用することも考えられる。このとき、密度が低く、沸点が低い水素は、圧縮や冷却に要するエネルギーが製大となり、これら再生可能エネルギーで貯蔵するのではなく、水素を直接燃焼利用する場合でも同じである。直接燃焼利用時には水素を直接燃焼して燃料を再生・制御し、再生可能エネルギーの場合に比べて、燃料タンクが小型化できる、気化熱が大きいため再生冷却の冷却剤として能力が高い、という特性を最大限有効活用している。アンモニアの燃料利用自体は古くから実績がある。大戦中のベルギーでは燃料不足を補うために、アンモニアを使用したバスが運用された[9]。冷戦期に開発され、現在も有人航空機の最高速度記録7,274 km/h（マッハ6.72）を保持するX-15はアンモニアを燃料とするロケットXLR99をエンジンとして用いた[10]。体積あたりの発熱量が大きいため燃料タンクが小型化できる、気化熱が大きいため再生冷却の冷却剤として能力が高い、という特性を最大限有効活用している。
しかしながら、現在に至るまで大多数の燃焼機器は炭化水素を燃料として用いており、脱硝設備にアンモニアを利用することは広く行われているものの、燃料としてアンモニアが燃焼機器に広く利用されているとは言えない。炭化水素を燃料とする燃焼機器は、膨大な基礎・応用研究を通じて、長い年月をかけて少しずつ熱効率を向上させてきた。その過程において、燃料の燃焼特性を詳細に把握し、これを再現する精緻な燃焼反応機構を構築することで、燃焼基礎研究は重要な一翼を担ってきた。したがって、将来のアンモニアを燃料とする「高効率」な燃焼機器の開発のために、アンモニアの燃焼特性を詳細に把握し、これを正しく再現できる燃焼反応機構を構築することは重要である。

ここで燃焼反応機構とは、燃焼過程の各素反応を修正アレニウス式でモデル化し、反応速度定数を求めるためのアレニウスパラメータと関連する化学種の熱物性・輸送係数を算出するためのパラメータで構成されるデータ群である。構築された燃焼反応機構は層流燃焼速度（伝播特性）や着火遅れ時間（着火特性）といった基礎燃焼特性と比較検証され、必要に応じてより精緻な理論計算や計測で得られた反応速度定数に更新される。このプロセスを膨大な基礎研究成果に基づいて長年実施した結果、いくつかの基本的な炭化水素燃料については、近年の燃焼反応機構は非常に幅広い条件で信頼できるものになりつつある。

前述の通り、アンモニアは現在でも脱硝設備に広く用いられており、アンモニアによるNOx還元反応については多くの研究がなされている[11-14]。また、炭化水素燃料（特に石炭）中に含まれる微量窒素化合物としてアンモニアは代表成分であり、燃焼過程におけるfuel NOx生成反応源として、アンモニアからのNOx生成反応についても多くの研究がなされている[15-18]。NOx反応系はアンモニア酸化反応のサブ反応経路であるため、アンモニア燃焼反応機構の構築[19-22]においても重要な役割を果たしている。構築された燃焼反応機構は、層流燃焼速度[23-28]や着火遅れ時間[29-34]の計測結果を用いて比較検証されている。

多くの炭化水素燃料で常温・大気圧における量論混合比の燃料/空気予混合気の層流燃焼速度は約40 cm/sであるのに対して、アンモニア/空気予混合気のそれは約6 cm/sであり、アンモニア火炎は極めて遅い伝播特性を有する。アンモニア/空気予混合気の着火遅れ時間は炭化水素/空気予混合気のそれと比較可能なほどデータがなく、アンモニアの非常に低い反応性のため、メタンや水素との混合気条件におけるデータから、アンモニア/純酸素/アルゴン予混合気の高温条件（1500 K以上）におけるデータに限られている。しかしながら、反応系に炭素原子が介在することでNOx反応経路[35]や着火温度[36]が大きく変化することが指摘されており、また、ガスタービン燃焼器内の火炎を模擬した実験では、火炎基部における中低温域の着火特性の重要性が指摘されている[37]。こうした背景から、混焼条件でないアンモニア/空気予混合気の中低温域における着火特性は、アンモニア燃焼反応機構を検証するうえで必要不可欠である。しかしながら、着火遅れ時間計測に使用される衝撃波管や急速圧縮試験機では、着火に至るまでの温度・圧力を長時間既定することが原理的に難しい。したがって、アンモニアのように反応性の低い燃料では、着火遅れ時間に代わる別の指標で着火特性を評価する必要がある。これを実現する新手法として、温度分布制御マイクロフローリアクタ（マイクロリアクタ）[38]を提案する。

3. 温度分布制御マイクロフローリアクタ

図1に温度分布制御マイクロフローリアクタの概略図を示す。消炎直径（多くの炭化水素燃料で約2.5 mm程度）以下の内径の石英管をリアクタとして用いる。この石英管を外部熱源で加熱することで、図1に示すような温度分布を管内壁に形成する。外部熱源として、管内の火炎の視認性をよくするために、水素/空気予混合平面火炎パーカーを用いることが多い。管内壁の壁面温度分布はリアクタ出口側から挿入した熱電対で計測する。マイクロリアクタ内に低温側から試験対象予混合気を流入させると、管内壁との熱伝達により所与の壁面温度分布に従って予混合気の温度が上昇し、ある位置で火炎が形成される。

数値計算は一次元混合断熱火炎計算コードPREMIXをベースに、気相エネルギー方程式と壁面との熱伝達項を追加した計算コードを用いる。

\[
\frac{dA}{dx} + \frac{A}{c_p} \frac{d}{dx} \left(\rho V + \frac{c_p}{c_v} \right) - \frac{d}{dx} \left(\sum_{k=1}^{n} \phi_k V_k c_p \right) = 0
\]
左辺最終項が追加した壁面との熱伝達項である。ここで，M, C_p, λ, T, ρはそれぞれ予混合気の質量流速，定圧比熱，熱伝導率，温度，密度である。Y_k, V_k, C_{pk}, ω_k, h_k, W_kはそれぞれ化学種kの質量分率，拡散速度，定圧比熱，生成速度，エンタルピ，分子量である。Nu, K, A, D, x はそれぞれヌセルト数，化学種の総数，流路断面積，管内径，座標軸である。T_wは壁面温度であり，計測した管内壁温度分布を用いる。

図2に量論混合比のメタン/空気予混合気を用いた場合の火炎位置（火炎位置の壁面温度）と予混合気の平均流入流速（U_0）との関係を示す。流入流速に応じて三種類の火炎動態が観察される。高流速域においては，normal flame が観察される。流入した予混合気は下流側の高温域で着火し，上流側に向かって伝播する。その後，予熱された予混合気の燃焼速度と局所の流速がつりあう位置で火炎は定在する。流入流速の低下につれて火炎位置は上流の低温側に移動し，ある流入流速以下では低温壁への火炎からの熱損失が過大となり，火炎は消炎する。すると，流入予混合気は再び下流の高温側で着火，火炎が上流の低温側に向かって伝播，消炎，の一連の現象を準定常的に繰り返す。この着火と消炎を繰り返す非定常火炎を FREI（Flames with Repetitive Extinction and Ignition）と呼んでいる。さらに流入流速を低下させると，非常に微弱な安定火炎が形成される（weak flame）。

これらの火炎動態は理論解析と数値計算でも確認されている。このとき FREI が観察される領域は点線で示される不安定解として得られる。理論解析の結果から，図2のnormal flame 位置（安定解），FREI 境域での不安定解，weak flame 位置（安定解）で構成される S 型の解は Fendell 曲線に相当する[39]。すなわち，normal flame 位置はデフラグレーションブランチ，FREI の着火位置と weak flame 位置は着火ブランチに相当する。Weak flame は非常に遅い伝播速度を示す定在火炎である。これにより，着火位置を安定化解であるという，特異な位置づけにある。Weak flame の極低流速条件では燃料の投熱量が小さいため（1 W 以下），反応帯であっても気相温度と壁面温度にはほとんど差がなく，熱暴走を経て着火に至る前の状態を定在化している。

ガソリン PRF（Primary Reference Fuel）の一つであり，その反応過程が詳細に調べられている n-heptane を用いて，weak flame と着火の関係をより詳細に調べた[40]。図3に n-heptane を燃料に用いる場合の火炎位置を図2に示す。Fig.1 Schematic of a micro flow reactor with a controlled temperature profile.

Fig.2 Schematic of flame responses for a stoichiometric methane/air mixture in the micro flow reactor.

Fig.3 Image of weak flames for a stoichiometric n-heptane/air mixture ($P = 1$ atm; $D = 2$ mm; $U_0 = 3$ cm/s) [40].

Fig.4 Computed heat release rate profile of weak flames for a stoichiometric n-heptane/air mixture ($P = 1$ atm; $D = 2$ mm; $U_0 = 3$ cm/s) [40].
いた場合の weak flame 画像を示す。また、同一実験条件の数値計算から得られた熱発生速度分布を図 4 に示す。実験・数値計算のいずれも、三段の酸化反応帯が観察された。ガス分析と数値計算による火炎構造の詳細な解析から、一段目は低温酸化反応、二段目は低温酸化反応で生成された CH₂O や H₂O₂ が消費される部分酸化反応、三段目は CO が CO₂ に酸化される完全酸化反応であることが分かった。n-Heptane は低温酸化反応と高温酸化反応からなる二段着火を示すことが知られているが、本リアクタでは高温酸化反応をさらに二つ（二段目と三段目）に分離観察できることができた。すなわち、非定常現象である着火過程を、weak flame により温度域別に定常分離観察できる。通常は 1 mm 以下の薄い火炎帯で起こる反応過程を引き延ばして温度域ごとに分離観察していることから、本手法を「火炎クロマトグラフィー」とも呼んでいる。

この二段酸化反応の応答に着目することで、燃料種や圧力等の各種パラメータが着火特性に及ぼす影響を計測できる。図 5 にオクタン価依存性を調べた結果を示す[41]。オクタン価の上昇（燃料の反応性の低下）について、点線で示される低温酸化反応が弱くなり、三段目の主反応帯の位置がより高温側に移動している（より高温に至らなければ反応が開始しない）。本手法による着火特性計測は、ガソリン PRF の圧力依存性を計算し、実験と比較する。燃焼反応機構には、Marinov によって開発された燃焼反応機構[46]と、Saxena & Williams によって開発された燃焼反応機構[47]を用いた。図 7にロリアクタの weak flame では、反応帯であっても発熱に伴う気相と固相の温度変化を無視でき、実験と数値計算の直接比較により規定された温度分布場において着火過程を詳細に調べることができる。すなわち、ωₖ の算出に使用する燃焼反応機構を検証することができる。

この点について確認するために、エタノール/空気予混合気を対象に、weak flame の圧力依存性について燃焼反応機構間の違いを調べた[45]。図 6 に著者混合比のエタノール/空気予混合気を用いた場合の weak flame の圧力依存性（輝度分布と火炎画像）を示す。エタノールは低温酸化反応を示さないため、前述の n-heptane の二段目と三段目に相当する二つの反応帯が観察された。ここで、低温側を青炎、高温側を熱炎と呼ぶ。図 5 より、圧力上昇に伴い青炎は強くなり低温側に移動し、熱炎は 1 から 2 atm でいったん強くなった後、2 から 5 atm にかけて弱くなっている。

ここで、二つの燃焼反応機構を用いて発熱速度分布の圧力依存性を計算し、実験と比較する。燃焼反応機構には、Marinov によって開発された燃焼反応機構[46]と、Saxena & Williams によって開発された燃焼反応機構[47]を用いた。図 7に

Fig.5 Responses of stoichiometric gasoline PRFs on weak flames (P = 1 atm; D = 2 mm; U₀ = 2 cm/s) [41].

Fig.6 Weak flame images and their luminosity profiles (stoichiometric ethanol/air mixture; D = 1 mm, U₀ = 2 cm/s) [45].
Marinov の燃焼反応機構を用いた熱発生速度分布の圧力依存性を示す。実験と同様に、二つの反応帯が得られている。圧力上昇に伴い、青炎は強くなり低温側に移動しているが、熱炎は弱くなっている。熱炎の圧力依存性は実験と計算で定性的に異なる傾向が得られた。すなわち、Marinov の燃焼反応機構は圧力上昇に伴う青炎の強化・熱炎の弱化を過小評価している。Fig. 8 に Saxena & Williams の燃焼反応機構を用いた熱発生速度分布の圧力依存性を示す。実験と同様に二つの反応帯が得られている。圧力上昇に伴い、青炎は強くなり低温側に移動し、熱炎は弱くなっている。定性的傾向は実験と同じである。しかし、実験では青炎の発光強度が3 atm で熱炎と同程度、5 atm で熱炎の1.5倍程度であることを考慮すると、数値計算では青炎の熱発生速度が2 atm で熱炎と同程度、5 atm では熱炎の9倍程度であり、Saxena & Williams の反応機構は圧力上昇に伴う青炎の強化・熱炎の弱化を過大評価している。

二つの燃焼反応機構で全く異なる weak flame の圧力依存性が得られたが、一般的な評価対象である燃焼速度や着火遅れ時間の圧力依存性はどうであろうか？Fig. 9 に質量燃焼速度と着火遅れ時間の圧力依存性の計算結果を示す。二つの燃焼反応機構は定量化的ほぼ同じ質量燃焼速度と着火遅れ時間の圧力依存性を示している。このことから、weak flame を利用した燃焼反応機構の検証を行うことで、従来手法だけでは検証しきれない部分を補完することができると考えられる。

4. 温度分布制御マイクロフローリアクタによるアンモニア燃焼反応機構の検証

マイクロリアクタは予混合気を予熱し、かつ滞在時間が長い場であるため、反応性の低いアンモニアでも適用できる可能性が高い。また、前章で述べたマイクロリアクタの特徴から、得られる試験結果は中低温域の着火特性と強い関係があり、既存の試験では全くデータのない領域を補完することが期待される。さらに、これまで化学発光撮影で得られた輝度分布を数値計算で得られた熱発生速度分布を比較し、燃焼反応機構の検証を実施してきたが、新たに化学種の濃度分布を取得し、これを数値計算結果と比較することにより詳細な燃焼反応機構の検証を実施し、より精緻な新しい
アンモニア燃焼反応機構の構築が期待できる。

図 10 にマイクロリアクタで撮影された量論混合比のアンモニア/空気火炎の画像を示す。比較のために、量論混合比のメタン/空気火炎の画像も下側に示す。メタンと同様に、高流速域における normal flame（図 10a）、中間流速域における FREI（図 10b）、低流速域における weak flame（図 10c）が観察された。反応性の低いアンモニアでも、マイクロリアクタで試験可能であることが確認された。化学発光はアンモニア火炎特有の赤色光であり、normal flame と weak flame の火炎帯はメタンと比べて数倍厚い。

アンモニア weak flame を対象に化学種分布計測を行い、これを数値計算結果と比較検証することを試みた。図 11 に実験装置の概略図を示す。内径 2 mm、外径 4 mm のリアクタ石英管に、ノズル形状の石英管を融着し、流路途中で極微量のオンラインサンプリングを行い、質量分析計で分析した。ノズルプローブの外形は 1.6 mm、ノズル先端の内径は 0.1 mm である。ノズルプローブの口と質量分析計の間を溶融石英のキャピラリーで接続し、キャピラリーの内径と長さを適切に調整することで、マイクロリアクタ内の流れを乱すことなく、極微量のオンラインサンプリング（流量約 0.2 cc/min）を実現した。外部熱源として使用する水素バーナの位置を変えることで、相対的にサンプリング位置の温度を変化させた。図 12 に計測結果の一例を示す。1270 K 付近で、アンモニアと酸素のモル分率が急激に減少し、水蒸気のモル分率が急上昇している。N2O のモル分率も 1270 K 付近で急上昇しているが、1280 K で最大値をとおり、その後減少しており、N2O は中間化学種としてのふるまいを示している。NO のモル分率は緩やかに上昇し、N2O のモル分率が減少している位置から急上昇を示している。このように、アンモニア weak flame の火炎構造を実験的に調べることに成功した。

図 13 に Tianらが開発した燃焼反応機構[19]を用
5. おわりに

水素キャリアとしてアンモニアを取り上げて、その燃焼利用を進めることで、基礎燃焼研究における課題を議論した。特に、アンモニア/空気予混合気の中低温域における着火特性データが不足しており、これを取得するために、独自の温度分布制御マイクロフローリアクタを導入した。さらに、リアクタの概要を説明し、これを用いたごく最近のアンモニア燃焼研究成果を紹介した。マイクロリアクタがアンモニア燃焼反応機構を検証するうえで有用であることを確認し、既存の燃焼反応機構が共通してアンモニア/空気予混合気の着火特性を過小評価していることを見出した。さらに研究を進め、産業界に利用してもらえる新たなアンモニア燃焼反応機構の構築を目指す所存である。

参考文献
特集：新しいエネルギー変換

謝辞
本研究の一部は科学技術振興機構「再生可能エネルギーからのエネルギーキャリアの製造とその利用のための革新的基盤技術の創出」領域（さきがけ）の支援により行われた。
分子間エネルギー移動を用いた光子のエネルギー上方変換

Energy Upconversion of Photons by Using Intermolecular Energy Transfer

村上 陽一（東京工業大学）
Yoichi MURAKAMI (Tokyo Institute of Technology)
e-mail: murakami.y.af@m.titech.ac.jp

光に関する基本技術である UC には多彩な応用が考えられるが、主な応用として、太陽光エネルギー変換系の効率向上がある。太陽電池・水分解光触媒・光合成材料などの、物質の電子励起状態を用いる変換系では、系に固有の閾値波長 \(\lambda_g \) が存在しており、\(\lambda_g \) より長波長のスペクトル部分は未利用で、エネルギー損失となっている（図 1a）。

図 1 (a) 波長に関する閾値 \(\lambda_g \) と UC の模式的表現.
(b) 能量に関する閾値 \(E_g \) と UC の模式的表現.
(c) アップコンバーターの実装形態に関する模式図.
特集: 新しいエネルギー変換

閾値エネルギーE_gが存在し、それより低エネルギーの光子は利用されておらず、光エネルギー変換効率を制限する根本要因となっている。TTA-UCはこのような根本的制限を回避できる技術であり、未利用な光スペクトル部分（未利用な光子群）を二次エネルギー生成に利用可能な光に変換する技術である（図1a, 1b）。

図1cに、光アップコンバーターが太陽電池等のデバイスに実装される際に想定される形態の模式図を示す。この図では上から太陽光が入射し、まずE_gより短波長の光がデバイスに吸収される。E_gより長波長の光はデバイスを透過し、背面に設置された光アップコンバーターに到達する。透過光はそこでより短波長の光に変換され、背面のミラーにより反射され、デバイスへと再入射し、二次エネルギー生成に寄与を行う。このように、実装時に、物質を劣化させる働きの強い紫外光ののような短波長光が光アップコンバーターに到達しないことは、応用に際する利点である。

2. スピン状態と状態間遷移

2.1 スピンとその多重度

電子はスピン角運動量1/2（単位$h_{\text{\tiny\textcircled{c}}}$、以下同様）をもつ。そのペクトル（スピンベクトル）の向きは磁場下で二通りに量子化され、矢印を用いて\uparrowおよび\downarrow（それぞれスピン関数αおよびβに対応）と表される。図3は磁場\mathbf{H}_zをz軸と平行としたときのαおよびβスピンの模式図を示す。図中の円錐は蔵差運動するスピンベクトルの先端の軌跡を示す。なお、先端の軌跡上の位置は不確定性原理から決定できない。分子内電子では分子内磁場が\mathbf{H}_zを与える。スピンベクトルに許される向きの数をスピン多重度（Spin multiplicity; M）といい、図3の孤立電子では$M=2$である。

以下、二電子が近接して相関が存在する場合を考える。このとき二電子は交換相互作用により結合し、互いの蔵差の位相が揃い、一つのスピンベクトルのように振る舞う。図4aに示すように、相関の仕方には二通りが可能で、αスピンとβスピンが互いにペクトルを打ち消し合う一重項状態（記号S_1、スピン角運動量$0、M=1$）と、打消し合わない三重項状態（記号T_2、スピン角運動量$1、M=3$）とがある。図4aのように、三重項状態ではスピンベクトルは\mathbf{H}_zに対して三通りの向き
特集：新しいエネルギー変換

2.2 自由エネルギー

パウリの排他原理から、一つの軌道には\(\uparrow \)と\(\downarrow \)のスピンをもつ最大二個の電子まで収容される。図4bに、横線で電子軌道を表し、縦方向で軌道のエネルギーをとった分子内軌道の模式図を示す。基底状態（記号\(S_0 \)）では最高被占軌道（HOMO）に\(\uparrow \)と\(\downarrow \)の電子が入り、一重項状態となっている。それらのうち一方が一つ上の軌道（\(S_0 \）における最低空軌道、LUMO）に移った電子励起状態では、HOMOに残った電子とLUMOに入った電子との相関が一重項の状態（記号\(S_1 \））と、三重項の状態（記号\(T_1 \））をとる。TTA-UCに用いられるのは、これらの\(S_0, S_1, T_1 \)の状態である。

続いて、これらの状態にある分子の自由エネルギーについて説明する。分子間エネルギー移動の可能性を決めるのはエンタルピーではなく、エンタルピーバラメータ変化も考慮されたギプスの自由エネルギーである。図4cに、分子のエネルギーダイアグラムを示す。通常、\(T_1 \)の自由エネルギー（\(E_{T_1} \））は\(S_1 \)のそれに（\(E_{S_1} \））より低い。これは分子に関するフントの規則（Hund's rule）による。物理的には、同種スピンの二電子は分子内で空間的近接が禁じられるために、クーロン反発エネルギーが低下することに起因する。\(S_1 \)と\(T_1 \)とのエネルギー差\(\Delta E_{ST} \)は電子交換エネルギー\(J \)と\(\Delta E_{ST} = 2J \)の関係がある[11]。このことから、相関する二電子の軌道の重なりが大きくなるほど、すなわち同系統の分子であれば分子サイズが小さいほど、\(\Delta E_{ST} \)は増大する。分子では一般に次の関係が成り立つ[11]。

\[
E_{T_1} - E_{S_0} > E_{S_1} - E_{T_1} = \Delta E_{ST}
\]

(2)

2.3 状態遷移

スピン-軌道相互作用が非常に強い場合を除き、一般に電子系とスピン系との結合は弱いため、光学遷移においては一度に電子とスピン両方の状態を変えることはできない。すなわち、分子の吸収・放出では、通常、一重項状態間または三重項状態間の遷移のみが許容され、項間の光学遷移（\(T_{n \geq 1} \leftrightarrow S_{n \geq 0} \））はスピン禁制となる。

光学遷移のレートはフェルミ黄金則により表現される。ある波長について、観測される初期状態\(i \)から終状態\(f \)への遷移レート\(k_{obs} \) [s\(^{-1}\)]は、\(P \)を遷移に関わる摂動の波動関数、\(\psi \)を波動関数として次式により表される。

\[
k_{obs} \propto \langle \psi_f | P | \psi_i \rangle^2 \langle X_f | X_i \rangle^2
\]

(3)

右辺の第一要素は遷移双極子モーメント、第二要
素は Franck-Condon 因子を表し、後者は光学遷移においてだけでなく、後述のエネルギー移動過程においても関連し、TTA-UC に用いる分子を選択する際にも考慮されるべき因子である。

3. 方法と原理
3.1 エネルギーキャリア分子と媒体
TTA-UC は、光吸収および三重項状態の生成を行う「増感分子 (sensitizer)」と、TTA および発光を行う「発光分子 (emitter)」とを媒体中に共存させて行われる。後者に半導体ポリマーを使用した研究例[12]もあるが、本稿は両者に分子を用いる場合を扱う。筆者らはこれまで、増感分子にパラジウム錯体ポルフィリンの一種である PdPh₄TBP を、発光分子に perylene を用いており、本稿に示す結果はいずれもこれを使用したものである。図5にこれらの分子構造とエネルギー図を示す。

分子の T₁ 状態が励起エネルギーのキャリアとなりうるのは、一般に三重項寿命 τₜ は長く（μs～ms オーダー）、媒体中を拡散し、他の分子と衝突・会合し、分子間エネルギー移動を行うまでの時間、励起状態を保持できるためである。[PdPh₄TBP で は τₜ ≈ 260 μs [13]、perylene では τₜ ≈ 4 ms [14]。]

従来、TTA-UC 研究の多くでは有機溶媒が分子の熱運動（拡散）の媒体に用いられてきたが、揮発性と可燃性、蒸気の有害性等が応用に向けた障害であった。この問題に対して、筆者らはイオン液体（イオンのみからなる常温溶融塩、実際不揮発で不燃）を用いることを着想、これを世界に先駆けて達成し[15,16]、従来の問題を解決した（図2）。続いて筆者らは、イオン液体を媒体とした試料における様々なキネティクスを解明している[13,14,17]。

3.2 TTA-UC の原理
図6に、TTA-UC を定性的に描写したエネルギーダイアグラムを示す。この図は、Eₕ = hν₁ の入射光子が増感分子により吸収された結果、発光分子から Eₕ = hν₂ (> hν₁) の光子が放出される過程を示している。図6では、2.3節で禁制とした T₁→S₀ の光学遷移が描かれているが、これは後述の PdPh₄TBP における重原子効果に起因して禁制が少し破れ、レートの低い光子の放出（りん光、phosphorescence）を伴う遷移が存在することを表すものである。図6の順に沿い、以下3.2.1～3.2.5に各過程の内容を述べる。

3.2.1 光吸収
光子（hν₁）が増感分子に吸収されると、許容な S₀→S₁ 遷移により、増感分子は S₁ となる。PdPh₄TBP では図2bに示したように波長 600－650 nm の範囲に光吸収があり、これはポルフィリン類の Q 帯による吸収である。ポルフィリン類が増感分子として適するのは、これより短波長側に光透過の窓があり、上方変換された短波長光が増感分子に再吸収されることが殆ど起きないためである。なお、図2bで 470 nm 付近から急に立ち上がる光吸収は、主に perylene によるものである。

3.2.2 項間交差（ISC）
S₁ となった増感分子では、図4bのように、二つの軌道にスピンが反平行（↑↓）に入る。イオン液体（イオンのみからなる常温溶融塩、実際不揮発かつ不燃）を用いることを着想、これを世界に先駆けて達成し[15,16]、従来の問題を解決した（図2）。続いて筆者らは、イオン液体を媒体とした試料における様々なキネティクスを解明している[13,14,17]。

図5 PdPh₄TBP（左）と perylene（右）の分子構造、および、両分子の各状態の自由エネルギー。エネルギーの値は文献または実験による概測値。
損失を抑えること,および, (ii) k_{ISC}を高めることにより三重項生成量子効率を向上させること,の二重の意義があることを示している.

3.2.3 三重項エネルギー移動(TET)

T_1となった増感分子は,その寿命の間,励起状態を保つ (PdPh4TBPでは$t_1 \approx 260$μs). この間に拡散を行い,試料中のS_0の発光分子に衝突すると, 図7aに示すエネルギー移動機構 (Dexter機構) により,エネルギーが発光分子へと移動する (triplet energy transfer, TET). この機構では,両分子間で図7aに示される電子スピン交換が行われ (前後でスピン角運動量は保存), 増感分子の励起エネルギーが発光分子へと移動する.

3.2.4 三重項−三重項消滅 (TTA)

励起エネルギーを受け取った発光分子には,そのエネルギーをなるべく長時間保持する性質が求められる. 本研究では,この要求を満たす分子として前述のperylene (τr ≈ 4ms) を用いている.

二つのT_1発光分子が,熱運動を経て互いに衝突すると,ある確率で,図7bに示される電子スピン交換を伴う分子間エネルギー移動,すなわちTTAが生じる. TTAの結果,一方の発光分子がS_0に,他方がS_1となる. 図4cに示したように, $E_{S_0} > E_{T_1}$であることから, TTAはいわば二分子のもつ励起エネルギーの合算である. このような「合算」が熱力学第二法則に反しないのは,ここでのエネルギーが熱浴と非平衡な励起状態のエネルギーであり, エクセルギー率1のものに対応する変換であるためである. 熱力学的には,これは電気エネルギーや熱エネルギーにおける変換にあたる変換と考えることができる. なお, TTAが熱力学第一法則を満たすのでは,分子では一般に式(2)が成り立つことによる.

一方, TTAの逆過程も熱力学的に可能だが,それについては今の場合望ましくないが,それはキネティクスにより抑制される. TTAがその逆反応と平衡しないのは,その後の発光という高速な不可逆過程が控えているためである.

3.2.5 発光

S_1の発光分子は, $S_1 \rightarrow S_0$還移が光学許容であることにより,短時間（通常10ns以下）でS_0に還移する. そのエネルギーは,発光分子の蛍光量子効率にしたがって光子（$h\nu_2$）として放出され, 光子エネルギーの上方変換が完結する.

図6 TTA-UCの過程を表す定性的なエネルギーダイアグラム. 実線矢印はradiative transition, 破線矢印はnon-radiative transitionを表す.

図7 (a) 三重項エネルギー移動(TET)および(b)三重項−三重項消滅 (TTA)においてなされる分子間での電子交換過程の模式図.
4. 得られた結果と知見

4.1 三重項エネルギー移動量子効率の決定

本節と次節4.2では、前節3.2で示したTTA-UCの過程のうち、特に3.2.3(TET)と3.2.4(TTA)に関して筆者らにより得られた結果と知見を概説する。

上述のように、TETは分子間衝突を要する短距離エネルギー移動過程である。これが拡散律速過程であるためか、これまでの他のTTA-UC研究では、衝突時のTET量子効率(\(\Phi_{\text{TET}}\))を1と前提して議論が行われてきた。すなわち、「ぶつかりさえすれば\(T_1\)エネルギーは必ず相手に移動する」「寿命内にぶつかれないことが\(\Phi_{\text{TET}}\)の唯一の制限要因である」という前提である。しかし、この前提が正しい保証は存在しない。むしろ、これは問題の単純化のために置かれた暫定的・便宜的な仮定と捉えられるべきである。

TETは分子間の「エネルギーのバトンリレー」であるが、このバトンを相手に渡す際、ある確率でバトンを落とす、すなわち励起エネルギーが熱として散逸される可能性を考慮する必要がある。筆者らは、TETのキネティクスを詳しく研究し、この点を明らかにした[13]。実験としては、試料にナノ秒レーザーパルスと白色LEDから特定波長を抽出した連続光とを直交して入射し、パルス光により作られた\(T_1\)増感分子から\(S_0\)発光分子にエネルギーが移動してゆく様子を時間分解計測した。連続光は、増感分子(PdPh4TBP)と発光分子(perylene)の三重項間光吸収\((T_1 \rightarrow T_n; n \geq 2)\)の過渡変化を観測する目的に用いた。この実験結果と、別途行った実験から決定した連続光波長における三重項間の光吸収係数を用い、\(\Phi_{\text{TET}}\)の値を決定した[13]。図8に五種類のイオン液体で作製された試料から測定された結果を示す。\(\Phi_{\text{TET}}\)はイオン液体の種類や励起パルスのエネルギーによらず約0.75であった。これから、従来無検証で用いられてきた「衝突すれば\(\Phi_{\text{TET}}=1\)」という前提が必ずしも正しくないことが明らかになった。

本結果は、TETを行う分子の設計・選定において、\(\Phi_{\text{TET}}\)を1に近づける検討努力が必要であることを意味している。Dexter機構は古くから知られており、分子間エネルギー移動機構だが、その効率に関する根本メカニズムは未解明と思われる。この点の根本理解には、衝突時の分子の相対的配向やFranck-Condon因子への考察が必要であろう。

4.2 UC効率の粘度依存性の発見と解釈

筆者がTTA-UCの媒体にイオン液体を用いた当初[15]、TTA-UC効率(\(\Phi_{\text{UC}}\))がイオン液体の種類に依存することが見出された。\(\Phi_{\text{UC}}\)向上の鍵を見出すため、イオン液体の違いの影響を見出すための実験を行ったが、当時は購入したイオン液体に対し真空加熱による除湿のみ行い、未精製で使用していたため、傾向がよく見い出されなかった。最近、筆者らはイオン液体の精製法を開発した。これによりイオン液体を精製して試料作製に用い、イオン液体の種類が\(\Phi_{\text{UC}}\)に及ぼす影響を研究した。その結果、\(\Phi_{\text{UC}}\)を決める最大の要因が、イオン液体の粘度にあることを発見した[14]。

図9aに、複数のイオン液体を用いて作製した試料から測定されたUC発光強度の相対値(\(I_{\text{UC},\text{rel}}\))を、イオン液体の粘度に対してプロットした結果を示す。これらの試料では励起波長(633 nm)における吸光度を一致させているため、本図の縦軸は\(\Phi_{\text{UC}}\)に比例する。この図は、粘度と\(\Phi_{\text{UC}}\)との間に明確な正の相關が存在することを示している。
この結果に関するアーティファクトの可能性の否定は、筆者らの論文[14]において示されている。この知見は、分子のダイナミクスが\(\Phi_{UC} \)を決定する要因であることを示唆している。図8の結果より\(\Phi_{ET} \)にイオン液体種類への依存性はないため、次の推論が導かれる：\(\Phi_{UC} \)の支配要因はTTA過程にある。かつ、そのキネティクスは、粘度の影響を受ける分子ダイナミクスの影響を受けている。

溶媒中でT1分子が拡散して出会うと、図9bに示す溶媒ケージ（solvent cage）中で遭遇会合体（encounter complex）を形成する。溶媒ケージ内にいる間、両分子は、次のkinetic stepに進むまで近接距離で衝突を繰り返す。通常、会合体形成以降の時間スケールは、分子拡散に要した時間より十分短く、一連の過程は拡散律速である。

この遭遇会合体（\([T1\ldots T1]\)）において、スピン角運動量1をもつ両T1分子間に交換相互作用が生じる。したがって、分子拡散に要した時間が十分短く、この過程は拡散律速である。

溶媒ケージ内でどのように多重度を生成するかの分岐確率はスピン統計に従い、理想的には多重度を重みとした比、すなわち、\(5[T1\ldots T1] \)が\(5/9 \), \(3[T1\ldots T1] \)が\(3/9 \), \(1[T1\ldots T1] \)が\(1/9 \)となると考えられている。

ところが、最も確率の高い\(5[T1\ldots T1] \)は、通常、エネルギー的に先に進むことは不可能なので、図10bに示すように再び解離するしかない。これは「じゃんけんの「あいこ」にあたる。3\([T1\ldots T1] \)は、その先のエネルギー条件を満たすなら、T1とS0の生成に進む。これにより、\(\Phi_{UC} \)が上昇したと考えられる。

二点目は、溶媒粘度が高いほど溶媒ケージ寿命（ケージの堅さ）が増すため、会合体の解離レート（\(k_{diff} \)）が低下し、会合したT1分子間の相互作用時間が増大するはず、という一般論に基づく。溶媒ケージ内における相互作用時間の増大は相互作用が働く。この相互作用は分子回転が高速になると消失する（詳細は文献[14]）。つまり、低粘度イオン液体中での浮遊相互作用は消失し、通常想定される図10bのキネティクスになっていくと考えられる。一方、高粘度イオン液体中では分子回転が抑制され、磁気双極子-双極子相互作用が発現する。これは磁気的効果が作用、前述のISCの場合と同様、異なるスピン多重度間のISCを発生させると考えられる。すなわち、「高粘度→磁気的効果が作用→スピン多重度間でのISCレート（\(k_{ISC} \)）が増大」という論理から、キネティクスが図10cへと変化し、\([T1\ldots T1] \)への帰着割合が増大、その結果\(\Phi_{UC} \)が上昇し、と考えられる。

筆者らは図9aの結果に対し、次の二点のメカニズムを提案している[14]。一点目は、溶媒粘度が高いほど溶媒ケージ寿命が増大するため、遭遇会合体の解離レートが低下し、会合したT1分子間の相互作用時間が増大するはず、という一般論に基づく。溶媒ケージ内における相互作用時間の増大は相互作用が働く。この相互作用は分子回転が高速になると消失する（詳細は文献[14]）。つまり、低粘度イオン液体中での浮遊相互作用は消失し、通常想定される図10bのキネティクスになっていくと考えられる。一方、高粘度イオン液体中では分子回転が抑制され、磁気双極子-双極子相互作用が発現する。これは磁気的効果が作用、前述のISCの場合と同様、異なるスピン多重度間のISCを発生させると考えられる。すなわち、「高粘度→磁気的効果が作用→スピン多重度間でのISCレート（\(k_{ISC} \)）が増大」という論理から、キネティクスが図10cへと変化し、\([T1\ldots T1] \)への帰着割合が増大、その結果\(\Phi_{UC} \)が上昇し、と考えられる。
以上の二点の仮説は図9aの結果を説明し、エンジニアリングとしてはΦUCの支配要因を見出し、その向上指針を得たことは有意義である。しかし、高粘度の追求はいずれその副作用、すなわち分子拡散性の低下という悪影響を生じるため、この指針によるΦUCの向上には限界が存在すると考える。図9aで最高のIUC,relを示した[N8881][NTf2]を用いて作製した試料は、ΦUC ≈ 15−16%であった。しかし、[N8881][NTf2]は、市販の（試料を作製可能な）疎水性イオン液体中では粘度が最高の部類で、これ以上高粘度の疎水性イオン液体は入手できていない。この向上指針を適用しうるイオン液体の粘度上限を、今後明らかにする必要がある。

5. まとめ

本稿では、光子のエネルギーを上方変換する、いわば光子エンジニアリングの基本技術について解説した。これとは太陽光などの非コヒーレント光に適用可能な現状唯一の方法である。本技術分野は発展期にあり、近年研究が活発になりつつある。しかし、本技術の応用実現にはまだ多くの技術的課題が存在し、その解決に有機化学合成による分子創出のみならず、流体中における輸送現象、溶質分子ダイナミクス、状態変化のキネティクスを含む多様な学理に基づき取り組むことが必要となっている。

参考文献

[6] Singh-Rachford, T. N. and Castellano, F. N., Photon Upconversion Based on Sensitized

1. はじめに

近年, 燃料電池や二次電池などの電気化学エネルギー変換デバイスへの期待が高まっている。その背景には高い（と期待される）エネルギー変換効率や（従来まではあまり必要とされなかった）時間応答性に優れたエネルギー貯蔵技術への社会的ニーズの高まりにある。

本稿で取り上げる,レドックスフロー電池（Redox Flow Battery, RFB）は,このような期待のもとに,この数年で著しい進展がみられ,さらに,多様な形式のレドックスフロー電池が提案されるなど,特に国外において活発な研究開発が展開されている。

後述するように,レドックスフロー電池においては,マイクロスケールの細孔を有する多孔質電極内での反応と輸送の制御が重要となる。活性物質を含んだ電解液を外部から電池本体内に供給する構造であることから,従来のリチウムイオン二次電池とは異なり,熱流体工学に基づいた電池設計が一層求められる電気化学エネルギー変換デバイスといえる。

ここでは,レドックスフロー電池（Redox Flow Battery, RFB）を取り巻く最近の状況について概観した後に,筆者らが進めている“電極相界面極限利用を実現するレドックスフロー電池”の実現に向けた取り組みについて紹介する。その上で,新たな電気化学反応系や固液二相系レドックスフロー電池などの最新の国内外の研究開発状況とともに将来についての展望を示す。

2. レドックスフロー電池

レドックスフロー電池は電解液中のイオンを活性物質とし,外部から電解液を電極に供給することで充放電を行う二次電池である。この点で,固体である金属や酸化物などを活性物質とする通常の二次電池とは異なる特徴を有する。すなわち,電池容量は外部に貯蔵する電解液の容量により決まる。一方で,電池出力は電解液を供給する電池本体内の電極面積により決まる。これより,電池容量と電池出力を個別に設計でき,大型から小型まで幅広いニーズに対応することが可能となる[1]。

加えて,ナトリウム硫黄(NaS)電池のように電池を高温に保つ必要がなく常温で作動することがができる。さらに,充電管理についても簡便である。すなわち,各セルには電池外部に設置された同一の電解液貯留タンクから同じ充電状態の電解液を供給するため,セルを超積層したスタックを構成した場合でも,各セルの充電状態は均等に保たれる。リチウムイオン二次電池において各セルの過充電を防止するためにセル毎に充電状態を正確にモニタリングし,かつ,運転制御する必要があることとは対照的である。さらに,電解液中に溶解した活性物質イオンの価数変化により充電を行うことから,活性物質の回収・リサイクルも容易である。

これらの優れた特徴を有するものの数年前までは,民間企業,公的研究所,大学を問わず,国内外の限られたグループのみにより研究開発が進められてきたにすぎない。その理由として,従来のレドックスフロー電池は,エネルギー密度と出力密度がリチウムイオン二次電池よりも低く,携帯端末用や車載用の電源としての競争力に劣っていた,ということが挙げられる。

しかしながら,近年,太陽光や風力などの再生可能エネルギーの導入促進が進められたことで,電力系統の安定化のための大規模電力貯蔵という用途が電池デバイスのニーズとして加わり,その結果,リチウムイオン二次電池に加えて,レドックスフロー電池やナトリウム硫黄電池などの大規模電力貯蔵に適した二次電池システムへの期待が高まっている。

我が国では「再生可能エネルギーの固定価格買
取制度」により、太陽光、風力、水力、バイオマス、地熱により発電した電力を電力会社が一定価格で買い取ることを国が約束しており、2012年7月1日の同制度のスタート以降、特に太陽光発電の設備導入が著しく増加している。しかしながら、太陽光や風力は天候に左右されるため、これらの電源を接続する電力系統に対して不安定化をもたらす、という負の側面を持っている。実際、いくつかの電力会社については、再生可能エネルギー発電設備の接続申し込みに対して、回答を留保する事態にもなった[2]。再生可能エネルギーの導入は今後も促進されることから[3]、電力系統への接続拡大のために、調整電源や地域間連携線の一層の活用という運用面に加えて、蓄電池の増強などの設備面からの方策の必要性が指摘されている。

米国においては、カリフォルニア州が2020年までに再生可能エネルギーによる電力供給を全体の1/3にまで引き上げるという目標を掲げている[4]。同州では2010年に電力網への電力貯蔵システム設置を推進する州法AB2514を成立し、2013年にはカリフォルニア州公益事業委員会（CPUC）が同州の3大ユーティリティ企業（PG&E社、SCE社、SDG&E社）に対し1,325MWの電力貯蔵設備の導入を2024年までに段階的に義務化するなど、先進的な取り組みを進めている。このような社会的状況を受けて大規模蓄電技術が脚光を浴びるとなり、近年の研究開発動向と相まってレドックスフロー電池への期待と注目が集まっている。

図1は活物質としてバナジウムを用いたレドックスフロー電池の模式図である。陽イオン交換膜の両側に多孔質電極を配置した構造となっており、多孔質電極には再充電可能なバナジウムイオンを含んだ電解液が供給され、電池の充電反応を示す。バナジウム系レドックスフロー電池の電気化学反応式を以下に示す。

\[V^{2+} + H_2O \xrightleftharpoons{\text{Charge/Discharge}} VO_2^+ + 2H^+ + e^- \] (1)

充電過程では、正極と負極にそれぞれ4価（VO2+）、3価（V3+）のバナジウム溶液を送液し、電極から電子移動が生じる。結果、正極及び負極の溶液はそれぞれ5価（VO2+）と2価（V2+）へと変化する。逆に、放電過程では負極から正極へと電子が移動し、負極溶液は3価に、正極溶液は4価に変化する。さらに、充電電解液に含まれる水素イオン（H2）が電解質溶液中に移動し、電極間を移動する。これらの電流反応を正極、負極の多孔質炭素電極表面上で進行する。そのために、電極表面の反応活性と多孔質電極内部への電解液の供給が重要となり、電極材料の開発と流路構造の設計が技術的な課題となる。
3. 電極相界面極限利用に向けた取り組み
我々のグループでは、熱流体工学の視点から、レドックスフロー電池の高性能化のための研究開発を進めている。特に、多孔質炭素電極と電解液の相界面を電気化学反応場として極限まで利用し、電池の内部抵抗（過電圧）を低減するための取り組みを進めている。そのためには、電極材料に加えて電解液供給の流路構造も重要であり、電極材料から流路構造に至るスケールでの実験と解析を行っている。主にバナジウム系を扱っているが、得られる知見は反応系に限定されるものではなく、様々な反応系のレドックスフロー電池に適用可能なものである。

従来、多孔質電極には図2(a)で示すような数mmの厚さを有する多孔質炭素材料が用いられてきた。しかしながら、電池性能の向上という観点からは電極厚さは薄いほうがイオン輸送抵抗および電子輸送抵抗の低減につながる。あわせて、電極内に十分な量の活性イオンを供給することが重要であり、電解液供給のための流路構造の設計が電池性能を左右する。

流路構造については、従来図2(a)に示すように電極両端から電解液を供給するフロースルー構造が採用されてきた。しかしながら、前述のように多孔質電極をより薄くすることができると、この流路構造は圧力損失の著しい増大を招くため現実的ではない。薄型電極の利点を生かしながら低圧力損失を実現するための流路構造が必要となる。そこで、図2(b)のような電極面に蛇行流路を配置する方法、さらには、図2(c)のように経的に電極内に活性イオンを供給する箇所構造などが考えられる。我々のグループでは、箇所構造流路と薄型電極の採用を提案している。

図3は我々のグループで設計・製作したレドックスフロー電池の単セル構造である。単セルはエンドプレート、炭素集電体、ガスケット、多孔質炭素電極、陽イオン交換膜から構成されている。電極面積は約3cm²である。陽イオン交換膜にはNafion®を使用している。電解液流路構造として箇所構造と蛇行流路の比較が可能である。

図4に箇所構造と蛇行流路のそれぞれについて電極時の電流電圧特性を比較した結果を示す。ここでは、厚さが約400μm（圧縮前）の多孔質炭素電極（SGL 10AA）を用いた。これにより、箇所流路において、特に高電流密度域で優れた放電特性
伝熱 2016年1月 - 44 - J. HTSJ, Vol. 55, No. 230

特集：新しいエネルギー変換

を示すことがわかる[11]。このことは、蛇行流路では活物質輸送が濃度拡散によって生じているため電極内での活物質輸送が十分ではなく、一方で、櫛歯流路では流入部と流出部が多い孔質電極によって接続されているため、多孔質電極に対して濃度拡散ではなく移流による活物質輸送となり、電極内部への十分な活物質の供給が実現できていることを示している。

図3 実験で用いたレドックスフロー電池の構造

図4 流路構造とフロー電池の放電特性

図5 多孔質炭素電極の熱処理前後のSEM像

実験で用いた薄型多孔質炭素電極は図5のよう
な直径10μm程度の炭素ファイバーから構成されており、図6に示すように熱処理を施すことにより電池性能が大幅に向上することも実験的に明らかにしている[11,12]。その要因としては、熱処理による炭素表面触媒活性の向上および多孔質電極内に存在するバインダー樹脂の消失による反応表面積の増大などが挙げられる。

図6 電極熱処理が電池性能に及ぼす影響

図7 電極材料のサイクリックボルタモグラム

図7は炭素電極材料に熱処理を施した場合と未処理の場合のサイクリックボルタモグラムである。測定は2.0M硫酸水溶液中でVOSO4溶液を0.5M、掃引速度は0.05V/sとして行った。酸化還元ピーク電位の差は、未処理電極においては0.99Vであるのに対して熱処理電極においては0.77Vである。すなわち、熱処理電極表面において反応活性が増大していることを示している。さらに、炭素電極表面構造の違いを検討するために、X線光電子分光分析（XPS）を行った。図8はC1sとO1sのそれぞれのピークについてナロースキャン測定を行ったものである。C1sピークについては熱処理の有無で有意な差が認められないが、O1sピークについてはC=O成分の顕著な増大が認められる。別途行った電極表面の元素分析結果から、熱処理によれば酸素成分が増大することが確認された。これらの知見は炭素電極表面の酸素含有官能基が
反応活性サイトになるとの報告と合致するものである。

図 8 多孔質炭素電極の X 線光電子分光測定結果

図 9 多孔質電極内流動解析結果

多孔質炭素電極の反応面積と活物質輸送についても熱処理の効果が考えられる。一つ目は、バインダー樹脂に一部被覆されていた炭素電極面が露出し、これにより実効的な電極表面積が増大することである。電気化学測定により、熱処理前後で多孔質炭素電極の電気二重層容量が増加することを確認している。加えて、バインダー樹脂の消失は多孔質電極内流動を均一化する効果が考えられる。図 9 は空隙率が 80%と 60%の多孔質電極を 3 次元構築した上で電極内流動について数値解析を行ったものである。空間率が 80%の条件において、流動がより均一化している様子が見て取れる。流動の均一化は実効的な反応面積の増大につながる。反応表面積の増大は炭素電極表面における局所電流密度の減少をもたらすことから過電圧低減につながるだけでなく、電極表面における活物質濃度低下を抑制する効果がある。

より基礎的な検討を行うために、実験で用いているものと同等の直径 10μm の炭素ファイバーについて反応流動解析を行い、放電特性を示したものが図 10 である[14]。単一または複数の炭素ファイバーを電解液流れ方向（図中の下方から上方）に配置した場合の負極側炭素ファイバー周りの活物質濃度分布についてもあわせて示している。

負極として複数（ここでは 2 本）のファイバーを用いることで、すべての流動密度領域でセル電圧が向上し、限界電流密度も大きく改善されることがわかる。炭素ファイバー間隔をファイバー直径の 1.5 倍と 5 倍に設定して解析を行ったところ、ファイバー間隔が近づくとファイバー後流において活物質濃度が減少するため、複数のファイバーによりもたらされる電極表面積の増大効果は限定的となることがわかる。

図 10 炭素ファイバー電極の放電特性曲線と電極周囲の活物質濃度分布

以上のことから、レドックスフロー電池においては、電解液の不均一流動などに起因する有効反応面積の減少に加えて、炭素ファイバー電極表面の濃度境界層の形成が電池性能の低下をもたらすことが明らかになった。次節では、これらの影響を考慮した多孔質電極モデルを導入し、レドックスフロー電池における過電圧要因の解析を行う。
4. レドックスフロー電池の反応輸送・性能解析

レドックスフロー電池には多くのパラメータが介在し、さらなる性能向上のためには、多孔質電極構造や活物質流動などの様々な因子が及ぼす影響について系統的に理解し、材料要素からシステム設計へとつなげる取り組みが重要である。数値解析技術はこのような観点から非常に有用である。すなわち、信頼性のある解析モデルを構築することにより、電池内部の反応輸送現象の基礎的解明に加え、各パラメータが及ぼす影響を定量的かつ網羅的に比較検討することが可能となる。

前節で示したように、レドックスフロー電池電極内の反応流動解析においては、炭素ファイバー電極周りの濃度境界層形成と電解液の不均一流動などに起因する有効反応面積減少の影響を考慮した多孔質電極モデルの導入が必要であり、解析モデルの構築を行った[15]。

図11 解析対象モデル

図11に解析で対象とした歯髄構造フロー電池の2次元断面の模式図を示す。電解質膜と多孔質電極から構成され、正極部と負極部の流路はそれぞれに集電体を挟んで隣り合っている。解析は図中の領域1、2について行った。電解液は硫酸水溶液、活物質は電解液中のバナジウムイオンとし、化学種として、\(H_2O, H^+, HSO_4^-, SO_4^{2-}, H_2SO_4, V^2+, V^3+, VO_2+, VO_2^+\)を考慮した。電解液の流動については、従来の式(1)とDarcyの式(2)を適用し、多孔質電極内の二次元流動場を得た。このとき、境界条件として図中\(\Omega_1\)に入り口側流路圧力\(p_{in}\), \(\Omega_2\)出口側流路圧力\(p_{out}\)を与えた。

\[
\nabla \cdot (\rho \mathbf{u}) = 0
\]

\[
u = -\frac{k_p}{\mu} \nabla p
\]

多孔質電極内のイオン種\(i\)の輸送はNernst-Planck式にもとづく式(3)から計算した。

\[
\nabla \cdot \left(-D_i \nabla c_i - z_i \mu_{mob,i} F c_i \nabla \phi \right) + \mathbf{u} \cdot \nabla c_i = R_i
\]

ここで\(C_i\)は炭素電極表面における化学種\(i\)の濃度を表している。これらの値の算出については、電極表面に輸送される活物質流束\(N_i\)を考慮して、正極については式(5)と式(6)を用いて求めた。負極についても同様に扱った。この際、電極表面での物質伝達係数\(k_m\)については式(7)から算出した。

\[
N_{VO^{2+}} = k_{\text{cat}} (C_{VO^{2+}} - C_{VO^{2+}}^S) = k_{\text{cat}} (C_{VO^{2+}})^{1-a_{\text{red}}} (C_{VO^{2+}}^S)^{a_{\text{red}}} \\
\times \left(\frac{C_{VO^{2+}}^S}{C_{VO^{2+}}} \right)^{a_{\text{red}}}(1-a_{\text{red}})F\eta_{\text{red}}/(RT) - \left(\frac{C_{VO^{2+}}^S}{C_{VO^{2+}}} \right)^{a_{\text{red}}}(1-a_{\text{red}})F\eta_{\text{red}}/(RT) \right),
\]

(5)

\[
N_{VO^{2+}} = k_{\text{cat}} (C_{VO^{2+}} - C_{VO^{2+}}^S) = k_{\text{cat}} (C_{VO^{2+}})^{1-a_{\text{red}}} (C_{VO^{2+}}^S)^{a_{\text{red}}} \\
\times \left(\frac{C_{VO^{2+}}^S}{C_{VO^{2+}}} \right)^{a_{\text{red}}}(1-a_{\text{red}})F\eta_{\text{red}}/(RT) - \left(\frac{C_{VO^{2+}}^S}{C_{VO^{2+}}} \right)^{a_{\text{red}}}(1-a_{\text{red}})F\eta_{\text{red}}/(RT) \right),
\]

(6)

\[
Sh = 0.24Re_{L}^{0.72} \cdot Sc^{0.31} = \frac{k_{\text{a}}d}{D}
\]

(7)

電極の実効反応面積 \(A\) については、電解液の不均一流れなどに起因する実効反応面積の減少を考慮した。図 9 で示したように有効反応面積は電極圧締の影響を受けることから、電極の圧縮前後の空隙率 \(\varepsilon_0\) と \(\varepsilon\) の比の関数として、ファイバーダイアル \(d\), 空隙率 \(\varepsilon\) の多孔質電極の理論幾何表面積 \(A_e\) を用いて次式から算出した[18]。

\[
A = \left(\frac{\varepsilon}{\varepsilon_0} \right)^{0.75} A_e
\]

(8)

解析では、電気的中性の条件ならびに電解液中の電位分布についても考慮し、解析には有限要素法を用いて、すべて式を連成させて行い、輸送係数などの各パラメータについては文献値[16,17,18]を参照した。

図 12(a)に電解液供給流量によるレドックスフロー電池の放電特性の実験結果を示す。供給流量の減少にともない、低電流密度域においても過電圧の増大が確認される。電極表面での物質輸送抵抗を考慮すると実験結果を再現することがわかる。すなわち、レドックスフロー電池においては、電解液を含む多孔質電極内の活物質を供給するため、流動反応速度に応じて濃度境界層の形成をモデル化して解析を行う必要があることがわかる。

図 12(b)の解 析 結 果

図 12 電解液供給流量によるレドックスフロー電池の放電特性の変化

構築した解析モデルからレドックスフロー電池の過電圧要因についての解析を示したものを図 13 に示す。実験で用いたセルについては、正極、負極、電解質膜、集電体などに起因する過電圧が同等程度であることがわかる。反応過電圧が全体の過電圧に占める割合は低く、バナジウム系レドックスフロー電池では、十分な触媒活性と表面積を有する電極であれば反応過電圧を抑制できず、度境界層の形成を考慮しない場合、放電特性は電解液供給流量に依存性しない、その一方で、電極表面での物質輸送抵抗を考慮すると実験結果を再現することがわかる。すなわち、レドックスフロー電池においては、電極表面での物質輸送抵抗を考慮すると実験結果を再現することがわかる。
きることがわかる。

一方で、イオン輸送と電子輸送に起因したオーム抵抗が大きい。本解析では、電解質膜厚を50μmとしており、その分、電解質膜による過電圧が顕在化している。このことから、電解質膜の薄膜化が電池性能向上に有効な手段であることがわかる。膜を介したバナジウムイオンのクロスオーバーは薄膜化するほど増大するため電流効率の低下を招くこととなる。今後は、レドックスフロー電池向けに高分子構造を設計し、薄膜化と活物質イオンの低透過性を実現する電解質膜の開発が期待される。電子輸送抵抗についても、さらなる向上の余地がある。バナジウム系レドックスフロー電池では強酸電解水溶液を用いるため、金属電極材料の使用が制限されるが、多孔質電極と集電体は炭素材料である。導電率は十分に高いとはいえない。導電率の改善には電極材の炭化条件の見直しなどが考えられるが、導電体の場合には触媒活性も求められるため、双方を考慮した検討が必要である。

図13 解析モデルのもとづくレドックスフロー電池の過電圧要因の分離

電極間界面の輸送抵抗に起因した過電圧が低電流密度域から顕在化していることは、通常の二次電池と異なり、レドックスフロー電池において特徴的であるといえる。電極表面における活物質濃度の低下が要因であることから、電極表面積の増大と電極内流動の均一化により、さらなる低減が可能であると考えられる。

4. まとめ

本稿では、レドックスフロー電池について、最近の状況と我々のグループの取り組みを紹介した。レドックスフロー電池では、通常の二次電池とは異なり、多孔質電極に電解液を移流させることでより高性能化が実現できる。そのため、セルに用いられる流路構造は多孔質電極とは反応に伴うエネルギー損失の抑制が求められるだけでなく、流動抵抗の低減も求められる。実際のシステムにおいては、入り口から出口にわたり電解液中の活物質イオンの濃度分布も形成され、複雑な反応流動場となる。電極内反応分布についても、まだ十分な知見を得られていない。このような観点からも、熱流体工学が重要な役割を担う電気化学エネルギー変換デバイスであるといえる。

材料開発についてもさらなる進展が期待できる。本稿で示したように、電極反応面積の増大は過電圧低減に効果的であると考えられる。我々のグループでは、電極反応面積を飛躍的に増大させるための検討も開始している。

最後に、ここ数年のレドックスフロー電池の進展と将来展望について記したい。レドックスフロー電池は長く研究開発が進められてきたが、旧来のフロースルー構造と厚型多孔質電極であった。これらは筆者らの見解では第1世代と呼ぶべきものであり、近年の大規模電力貯蔵システムとしての期待の高まりから、現在でも多くの実証事例で採用されている。しかしながら、社会実装につなげることには低コスト化の実現が不可欠であり、近年、多孔質高分子形燃料電池の要素技術を適用することで大幅なセル性能の向上が報告されてきている。本稿で示した「櫛歯構造流路」と「薄膜多孔質電極」の組み合わせも同様に位置づけられ、第2世代と呼べるものと考えている。

筆者自らが特に重要と考えるのは、その次の第3世代ともいえるフロー電池を先導する研究を展開することである。ここでの第3世代と称するのは、新たなレドックス反応系も含めてフロー電池に最適化されたセル構造と新規材料を見出し、採用したシステムである。

新たなレドックス反応系としては、水素－臭素（H₂/Br₂）[19]系、チタン－マンガン（Ti/Mn）系[20]、さらには非金属の有機系活物質[21,22]が提案されるなど、世界中で活発な研究開発が進められている。

加えて、電解液中に固相活物質を混入して、固
伝熱 2016年1月 - 49 - J. HTSJ, Vol. 55, No. 230

液混濁液を供給するタイプのレドックスフロー電池の提案もなされている[23,24]。固相活物質はエネルギー密度が高く、非水溶性の有機電解液との組み合わせによりセル電圧を高くすることが可能となるため、新たな可能性を開くものとして期待される。

いずれの形式においても、レドックスフロー電池の社会実装と大量普及へ向けては、電池内の反応輸送現象の基礎的調査とその制御が重要な課題であり、我々のような熱流体工学、特に伝熱工学を基盤とする研究者や技術者には大きな期待と責任が寄せられていると信じて、筆者らは研究を進めている。

謝辞
本稿で紹介した研究の一部は、筆者が東京工業大学在籍時に行われたものであり、関係各位に深く感謝いたします。X線光電子分光分析（XPS）は、大阪大学科学機器リノベーション・工作支援センターの支援のもとに実施した。関係各位に謝意を表します。

本研究を進めるにあたり、JSTささがけ「エネルギー高効率利用と相界面」領域の支援をいただきました。関係各位に感謝いたします。特に、故笠木伸英先生におかれましては、同領域の研究統括として、研究開始当初より貴重なご助言と励ましをいただきました。心より感謝を申し上げ、謹んでご冥福をお祈りいたします。

参考文献
[19] Lin G. et al., Advanced Hydrogen-Bromine Flow

日本伝熱学会関西支部では、1989年以来途切れない2年に1度宿泊付の「関西伝熱セミナー」を開催してまいりました。2015年は第14回目となり、最澄によって開かれたと伝えられ、約1200年の歴史を持つ由緒ある温泉である滋賀県大津市のおごと温泉・びわこグランドホテルを会場として「自然エネルギー・環境問題の現状と今後の可能性」について考えるセミナーを開催いたしました。会場からは正面に琵琶湖が望める素晴らしい環境でした。講師にはそれぞれの分野での深い造詣を持たれた自然エネルギー・環境問題、最新の伝熱技術に関するエキスパートの方々9名（うち、国立研究機構1名、大学5名、企業2名）に来ていただき、話題提供していただきました。

セミナーは2015年8月28日（金）の13時に開会し、初日に5件の講演と質疑応答がなされましたが、その前半3件は地球規模の環境・自然エネルギーを取り上げました。まず、立命館大学・琵琶湖Σ研究センターの熊谷道夫氏より、「地衡流渦の制御とそのエネルギーの利用」と題した講演が行われました。圧力とコリオリ力がバランスして生じる渦流を地衡流渦と、琵琶湖の渦流を環流と呼び、そのエネルギーが地球温暖化の進行に伴って増加していることが報告され、海洋や湖沼に形成される地衡流渦を制御して、そのエネルギーを利活用したり、水中環境の調整や大気中に発生する低気圧の軽減に貢献したりする取り組みの一端が紹介されました。

第14回関西伝熱セミナー「自然エネルギー・環境問題の現状と今後の可能性」
Report on the 14th Kansai Heat Transfer Seminar

当セミナーのフライヤー

南川久人（滋賀県立大学）、野口佳樹（龍谷大学）
Hisato MINAGAWA (The University of Shiga Prefecture) and Yoshiki NOGUCHI (Ryukoku University)
e-mail: minagawa@mech.usp.ac.jp, y-noguch@rins.ryukoku.ac.jp
初日の講演会のスナップ（講演者は熊谷一郎氏）

初日の後半2件は、最新の伝熱技術に関するものので、自動車の熱交換器と熱音響技術が取り上げられました。まず株式会社デンソー・熱交換器開発部の佐藤英明氏より「自動車用の最新熱交換器の紹介」と題した講演があり、EV／HV化、過給D／S化などパワートレーンの多様化に対応するパワトレ系冷却およびエアコン用いる新型の熱交換器について紹介していただきました。

初日の最後は滋賀県立大学の坂本真一氏による「熱音響技術の可能性と課題について」と題した講演でした。熱音響技術は環境問題などの解決に寄与できるとして、ここ数年注目をされており、この技術の基礎となる熱音響現象について説明されました。その後に、これまでの坂本氏の取り組みや、今後の課題について詳細な説明がなされました。

初日の講演はこれで終了となりましたが、それぞれの講演で活発な質疑討論が行われ、最後は30分近く後ろにプログラムがずれ込むほどでした。

講演終了後、大多数の参加者が宿泊されましたので、ゆっくりと温泉ならびに食事・懇親会を楽しんでいただきました。参加者の方から、なかなか豪華な食事・懇親会であると言っていたかもしれませんが、写真撮影の後、お開きとなりましたが、その後も懇親会に使用して、伝熱・環境・エネルギーの話、それ以外の楽しい会話が、夜遅くまで続きました。

懇親会の様子

懇親会（二次会）の様子

さて、2日目の8月29日（土）は、9時ちょうどより講演が始まりましたが、参加者諸氏は少し眠そうにも見えますが、多数ご参集いただきました。

2日目は水素エネルギー、家庭用給湯器、太陽熱発電と関西のエネルギー事情といったテーマで講演いただきました。

まず、九州大学の高田保之氏によって「水素インフラ普及への課題と熱物性測定」と題した講演
が行われ、水素インフラに係る技術的な課題と九州大学水素材料先端科学研究センターで行われている高圧水素物性測定研究の一端を紹介していただきました。日本の水素ステーションは海外に比べて非常に高価で、規制も厳しいことから、その普及は思うように進んでいないという問題点や今後の展望もお話しいただきました。

次いで、株式会社ノーリツ・研究開発本部の濱田哲郎氏より、家庭用給湯器の環境対応技術」と題して講演いただきました。給湯器各商品の現状を整理するとともに、キーデバイスである“熱交換器”の技術についてユーモアを交えて紹介していただきました。

さらに、新潟大学の松原幸治氏には「集光型太陽熱発電の現状とソーラーレシーパの研究開発」と題し、欧州や米国で実用化されている集光型太陽熱発電（CSP, Concentrated Solar Power）が写真を交えて紹介され、最新のプラントでは集光した太陽光の集熱と蓄熱により24時間発電が可能であることや、太陽熱発電プラントの現状と、高温型の太陽集熱器（ソーラーレシーパ）の研究開発の動向について解説がなされました。

参加者につきましては、講師9名を含めて63名となりました。一般参加者は主に関西の方々ですが、遠く九州、四国からも参加いただきました。

最後になってしまいましたが、大変ご多忙中にもかかわらず、ご講演をお引き受けいただいた講師の方々、ご参加の皆様には厚く御礼を申し上げたいと思います。さらに、以下に名簿を示します関西伝熱セミナー実行委員の諸氏には企画から会場選定、講師との交渉、広報など、さまざまなお世話をり、大変ありがとうございました。特に会場との交渉、懇親会、会計をご担当いただいた塩見先生とフライヤー、HPを始め広報にご貢献をいただいた先生方にここに記して謝意を述べさせていただきます。

関西伝熱セミナー実行委員
実行委員長：南川 久人（滋賀県立大学）
幹事：野口 佳樹（龍谷大学）
委員：塩見 信一（龍谷大学）、浅野 等（神戸大学）
後藤田 浩（東京理科大学）、岩 巴也（京都大学）
岩井 裕（京都大学）、北川 石英（京都工芸繊維大学）、栗本 邉（滋賀県立大学）
熱物質輸送国際センター（ICHMT）の現状と今後の課題

Present Status and Future Issues
about International Centre for Heat and Mass Transfer (ICHMT)

吉田 英生（京都大学）
Hideo Yoshida (Kyoto University)
e-mail: sakura@hideoyoshida.com

表1 理事会メンバー（2015年1月～2018年12月）

President
Kemal（Kemo）Hanjalic Bosnia Herzegovina

Vice Presidents（2名）
Nobuhide Kasagi Japan（～2015年7月）
Jacques Padet France（2015年10月～）
Terrence W. Simon USA

Secretary General
Faruk Arińç Turkey

Executive Committee Members（15名）
Cristina H. Amon Canada
Yildiz Bayazitoglu USA（Vice Chair）
Pedro Jorge Martins Coelho Portugal
Renato M. Cotta Brazil
Peter J. Heggs UK
Yogesh Jalaria USA（Chair）
Sadik Kakaç Turkey
Alexander I. Leontiev Russia
Denis Lemonnier France
Leonid Dombrovsky Russia
Peter Stephan Germany
Paolo Di Marco Italy
John Thome Switzerland
Hideo Yoshida Japan
Xing Zhang China

Financial Auditors
Renato M. Cotta Brazil
Jean-Francois Sacadura France
Peter Stephan Germany

Past Presidents
Michel Combarnous France
Maurizio Cumo Italy
Richard J. Goldstein USA
Geoff F. Hewitt UK
Graham de Vahl Davis Australia

1. はじめに
国際伝熱会議（IHTC）は大規模ながら4年に一度の開催であるのに対し、熱物質輸送国際センター（ICHMT，http://www.ichmt.org/）が主催あるいは共催する会議は中小規模ながら頻度が高いこともあり、伝熱に関する国際的な動きに強い影響を与えているのは国際伝熱会議アセンブリー（AIHTC）よりもICHMTである、ともいえます。ICHMTについては本誌に何度か報告記事が寄せられている[1-5]のの、最近の実態は本会会員の皆様にあまり馴染みがないと思われますので、その概要を説明するとともに、問題点をお伝えしたいと思います。

2. 組織構成と選挙プロセス
現在ICHMTには31ヵ国（Australia, Austria, Belarus, Belgium, Brazil, Canada, China, Egypt, France, Germany, Hungary, India, Israel, Italy, Japan, Mexico, Morocco, New Zealand, Poland, Portugal, Romania, Russia, Serbia, South Korea, Sweden, Switzerland, Thailand, The Netherlands, Turkey, UK, USA）から42のMember Institutions（以下MI）と、日本からはHTSJ, JSME, SCEJの三つが加盟しています。StatutesやBy-lawsに記されているようにICHMTの運営組織はThe General Assembly（GA）
（4年に一度IHTC中に開催、MIごとに1名の投票権）
The Scientific Council（SC）
（任期は、以前は4年でしたが最近2年に変更になりました。総勢200名以上で、日本からは2015年当期14名でしたのが現在12名です：石塚勝、宇高義郎、岡崎健、川口靖夫、高田保之、高橋厚史、塚田隆夫、牧野俊郎、円山重直、宮内敏雄、望月貞成、吉田英生）
The Executive Committee（EC）
（任期4年で3期まで、15名。図1に2014年8月の写真）

傳熱 2016年1月 - 54 - J. HTSJ, Vol. 55, No. 230
国際活動・会議報告

図1 理事とオブザーバー（2014年8月10日）
後列：Jaluria, Bar-Cohen, Zhang, Shafeyeva, Thome, Marco, Orlande, Coelho, van Steenhoven, Stephan
前列：Arinç, de Vahl Davis, Bayazitoglu, Goldstein, Padet, Simon（笠木・吉田はIHTC-15対応のため不在）

年から副会長としても2期連続でご在任中でしたが、昨夏のご逝去で、わが国のみならず世界の熱科学工学界が大きな損失を受けたことは残念な限りです。

GA, SC, EC間の選挙の関係は図2に整理したように複雑で、とりわけ新会長・新副会長の候補者指名に、現会長のみならず元会長にも権限が付与されているため、組織が更新しにくい問題があります。理事会の構成メンバーがほとんどと比較的年長者が多い上に、年長者の出席率の方が高いために、実際の議論の場がますます高齢化していることも否定できない現実です。

筆者は2011年からECとして2期目です。笠木氏のご逝去もあり次期（2019〜2022年）に向けてぜひもまたわが国から次世代のECが選出されるように準備する必要があります。そこで、ECの選挙権を有するSCの皆様、さらにはそのECの候補リストを準備する（実にあいまいなシステムですが、以下の下線部のように国力相応？の人数を推薦すれば、そのまま入れられる）伝熱学会理事会を中心とする皆様への注意喚起をさせていただきたいと思います。

ここで、ICHMTの規約を読まれる方はほとんどないと思いますので、この機会に、少し長くなります該当部を引用します。

図2 ICHMTのGA, SC, ECの選挙プロセス（笠木・吉田：2014年4月作成）
まずSCです：

Statutes Article 14
14.1. Members of the Scientific Council are elected by the General Assembly from nominations by the Executive Committee, Scientific Council or the Institutional members for a period of two years and may be re-elected;

By-laws Article 3 (revised)

Members of the Scientific Council are elected by the General Assembly, for a period of two years, on the basis of nominations received from the Scientific Council, the Executive Committee or any Institutional Member.

Call for nominations must be issued at least four months before the first Executive Committee meeting of a calendar year, or the last Executive Committee meeting prior to the meeting of the General Assembly. The Executive Committee shall prepare the list of the nominees for the mail ballot from the nominations received.

The list of nominees for the ballot should ensure that countries active in the field are appropriately represented. Scientific Council members may be reappointed.

Members of the Assembly for the International Heat Transfer Conferences are ex-officio members of the Scientific Council, subject to their acceptance.

Next is ECです：

Statutes Article 15

15.1. The Executive Committee is the body which organizes and carries out the activities of the Centre. Members of the Executive Committee are elected by the Scientific Council by a simple majority of those voting in a mail ballot conducted by the President of the Scientific Council. Nominations for membership on the Executive Committee may be made by any member of the Scientific Council or any Institutional Member. Executive Committee members serve a term of four years and may be re-elected twice;

By-laws Article 7 (revised)

Members of the Executive Committee (EC) are elected by, and from, the Scientific Council in a mail or email ballot conducted by the President of the General Assembly. Nominations from members of the Scientific Council will be submitted to a Nominating Committee comprised of the President, all Past Presidents (subject to their agreement to serve) and those outgoing Executive Committee members who are not eligible for re-election. Based on these nominations, the Nominating Committee will prepare the final list of candidates for the election, taking into account the number of nominations, research activity, ICHMT participation of each nominee, and geographical, gender, and employment diversity.

The Secretary General will contact all candidates to confirm their willingness to serve and attend EC meetings. At least 19 names will be on the ballot from which 15 will be elected by receiving the most votes. In case of a tie, the winner will be determined by chance through drawing lot or similar procedures.

3. ICHMTとAIHTC

前報[5]で以下の報告をさせていただきました。

上記会議（2012年7月にBathで開催されたAIHTC・ICHMTのダブルヘッダー会議）では、AIHTCとICHMTの協力に携わって、より具体的なスキームを検討するための特別委員会（F. Arinc, A. Bar-Cohen, G. de Vahl Davis, K. Hanjalic, N. Kasagi, T. Simon）が設置されました。目標として、伝熱・熱科学の国際連合組織を両組織を核として形成し、The International Council for Science（ICSU）のメンバーを獲得することです。なお、当面の組織的な融合形式としては、AIHTCの現在の自治権を尊重しつつ、AIHTCがICHMTの傘下に入るということが提案されていました。

しかし、残念ながら、その後の検討は委員会内に温度差があり進みませんでした。そこで、2014年4月26日にMarseilleで開催されたICHMT理事会では、笠木氏と吉田とで図3に示す資料を準備して問題提起しました。結果を先に申しますと、本提案は理事会メンバーの賛同を得るには至りませんでしたが、今思い返せば笠木氏のご遺志の重要柱の一つとして、本会の皆様にもお知らせしたいと思います。

熱科学工学国際ユニオン（IUTSE）に向けて

図3（スライド：1～11）

ICHTM・AIHTC両理事会への提案書表紙です。当時、笠木氏はICHMTとAIHTCの副会長を兼任しておられました。
国際活動・会議報告

3. Ref.2：The International Union of Theoretical and Applied Mechanics (IUTAM)は，ICSUの科学ユニオンメンバーの一つです。

4. Ref.3：ICHMTは，IUTAMの加盟メンバーの一つです。ICSUから見ると孫メンバーになります。

5. 以下が提案の主部です。ICHMTとAIHTCを比較してみました。最大の違いは，ICHMTの活動は定常的ですが，AIHTCの活動は4年に一度です（開催中間年にアセンブル会議は開催されます）。

6. ICHMT理事会メンバーとAIHTC理事会メンバーは結構重複しています。AIHTCは加盟各国（18カ国）から二人ずつのDelegateが出ていて，さらに正・副・元会長や事務局長等で40名を超えます。

7. IUTAMと同格のICSU科学ユニオンメンバーになる道を，短期あるいは長期で考えてみました。
8. ICHMT 組織構成の図示化です。事務局はトルコにあり、定常的に事業収入があります。

9. AIHTC 組織構成の図示化です。事務局はSecretary個人で、予算もありません（Begell House 社のIHTC Digital Libraryから若干の入金可能性はありません）。各IHTCは各開催母体内の予算で運営されます。

10. 両者が統一体になるための遷移過程を考えてみました。

4. 今後に向けて

以上述べましたように、伝熱および熱科学に関して、私たち日本が積極的に発言・行動していかないと現状はなかなか変わらないと思います。このため、その中心となる日本伝熱学会が一丸となった国際展開が必須であります。このことを最重要課題の一つとして常に意識して行動していく必要があります。皆様のご協力をお願いする次第です。

参考文献
国際活動・会議報告

第24回IIR国際冷凍会議（ICR2015）報告

渡邉 澁雄（中部電力）
Choyu WATANABE (Chubu Electric Power Co., Inc.)
e-mail: Watanabe.Chouyuu@chuden.co.jp

1. はじめに
国際冷凍学会（IIR; International Institute of Refrigeration）は、「国際冷凍協会をパリに創設することを目的とする国際条約」によって1920年に設立された組織であり、IIRの母体となったIARは1908年に設立された。日本は、この国際条約を1920年に調印、1924年に批准して、IIRに加入した。さらに、日本は、1954年に大幅改定した「国際冷凍協会に関する国際協定」という新条約に、1955年に調印をした。現在の加盟国数は58である。

国際冷凍会議（ICR; International Congresses of Refrigeration）は、IIRにとって、4年に一度行われる最大の行事であり、IIRの総会を行うと共に、全ての冷凍分野における関係者がこの会議に集い、最新の技術や学術、さらには地球環境政策に関する情報を交換する。ICRは、1908年に第1回がパリで開催され、1951年第8回のロンドン開催から4年に一度となった。日本は1940年に開催することが決まっていたが、戦争で流れた経緯がある。ICR2015は、ICRの100年以上の歴史の中で、今回初めて、日本の横浜で開催されたものであり、日本の冷凍空調技術者・研究者の90年に亘る宿願が結実したといっても過言ではない。

ICR2015をIIRとともに共催した日本冷凍空調学会は、定款の事業にIIRへの連絡を掲げ、IIRの日本窓口として活動している。なお、IIRの国家会員としての機関は、公益社団法人としての日本冷凍空調学会の監督官庁である内閣府である。

当日本伝熱学会は、ICR2015協賛の12学会の一つであった。なお、ICR2015の後援は農林水産省を含む13機関であった。

スポンサーは、プラチナが20機関、ゴールドが12機関、シルバーが18機関であり、この他に、法人1機関と個人15名のご寄付を頂き、ICR2015の財政を力強く支えていただいた。

2. 会議の概要
ICR2015の概要を以下に示す。
・開催期日：2015年8月16日（日）～8月22日（土）（7日間）
・開催場所：横浜市 パシフィコ横浜
写真1に8月18日（火）に行われた開会式の模様を示す。中央が林文子横浜市長、右側中央から、和泉洋人内閣総理大臣補佐官、佐藤正水産庁加工流通課長、左側中央から、Hendrik Van Der Ree前IIR総会議長、小山繁日本冷凍空調学会会長（九大教授）である。

写真1に参加登録の受付会場（2階）を示し、写真3にフロアマップを示す。開会式とプレナリー講演は1階で行い、その他は3階と4階を使用した。

写真1 ICR2015 開会式
写真2 参加登録の受付会場

伝熱 2016年1月 - 59 - J. HTSJ, Vol. 55, No. 230
ICR2015における参加者総数は1,185人で、登録者は1,121人、同伴者が64人であった。参加者数の上位10か国は、日本(439人)、中国(193人)、ドイツ(60人)、フランス(59人)、米国(56人)、韓国(44人)、台湾(38人)、英国(28人)、スペイン(20人)、スウェーデン(19人)であった。

招待講演
開会式の前日(8月17日(月))に、渡部康一慶應義塾大学名誉教授をはじめとする長老格の日本人講師によって、8件のテクニカルサマリーテクニカルサマリー講演が行われた。開会式に引き続き、1件のプレナリーテクニカルサマリー講演が行われ、さらにその後のテクニカルセッションにおいて、13件のキーノート講演が行われた。招待講演と講演者の一覧を表1に示す。

講演論文数とその内訳
表2に講演論文の分野と分野別の件数を示す。IIRには、A1(極低温物理・工学)からE2(ヒートポンプ・エネルギー回収)までは10の委員会があり、ICRのテクニカルセッションも、基本的には、この10分野で並行して行われる。ICR2015では、協賛学会の空気調和・衛生工学会の協力を得て、S(持続可能かつ高性能ビルディング)分野を設定することができた。

ICR2015における講演論文総数は643であり、分野別では、B1(熱力学と輸送過程)、B2(冷凍設備)、E2(ヒートポンプ、エネルギー回収)E1(空気調和)が上位であった。

講演論文数の上位10か国は、中国(145件)、日本(122件)、米国(40件)、フランス(38件)、ドイツ(26件)、英国(24件)、台湾(23件)、スペイン(21件)、イタリア(20件)、韓国(19件)であった。

ワークショップ
ワークショップのテーマと講演数を表3に示す。
ワークショップは14テーマからなり、講演数総数は83であった。

表1 招待講演と講演者

<table>
<thead>
<tr>
<th>Plenary Lecture</th>
<th>Ken Koyama (Institute of Energy Economics, Japan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Summary Lectures</td>
<td>Kouichi Watanabe (Keio University, Japan)</td>
</tr>
<tr>
<td></td>
<td>Hiroshi Honda (Kyushu University, Japan)</td>
</tr>
<tr>
<td></td>
<td>Kenji Tojo (Tojo R&D Design Office, Japan)</td>
</tr>
<tr>
<td></td>
<td>Mitsuhiro Udagawa (Kogakuin University, Japan)</td>
</tr>
<tr>
<td></td>
<td>Sajio Sumida (Dr. Sajio Sumisda Clinic, Japan)</td>
</tr>
<tr>
<td></td>
<td>Yasuyuki Sagara (The University of Tokyo)</td>
</tr>
<tr>
<td></td>
<td>Shinsuke Kato (The University of Tokyo)</td>
</tr>
<tr>
<td>Keynote Lectures</td>
<td>Yoichi Ikeya (Sumitomo Heavy Industries, Ltd., Japan)</td>
</tr>
<tr>
<td></td>
<td>Motohiko Nishimura (Kawasaki Heavy Industries, Ltd., Japan)</td>
</tr>
<tr>
<td></td>
<td>Mark O. Melinden (NIST, USA)</td>
</tr>
<tr>
<td></td>
<td>Young Tae Kang (Korea University, South Korea)</td>
</tr>
<tr>
<td></td>
<td>Jacques Gilpart (IIR President of Section C, France)</td>
</tr>
<tr>
<td></td>
<td>Kuniaki Kawamura (Mayekawa Mfg. Co., Ltd., Japan)</td>
</tr>
<tr>
<td></td>
<td>Gerald Cavalier (Cemafroid, France)</td>
</tr>
<tr>
<td></td>
<td>Pega Hrnjak (University of Illinois (ACRC) and CTS, USA)</td>
</tr>
<tr>
<td></td>
<td>Cien-Yuh Yang (National Central University, Taiwan)</td>
</tr>
<tr>
<td></td>
<td>Per Lundqvist (KTH, Sweden)</td>
</tr>
<tr>
<td></td>
<td>Yi Jiang (Tsinghua University, China)</td>
</tr>
<tr>
<td></td>
<td>Shin-ichi Tanabe (Waseda University, Japan)</td>
</tr>
<tr>
<td></td>
<td>Hsien-Te Lin (National Cheng-Kung University, Taiwan)</td>
</tr>
</tbody>
</table>
表2 ICR2015の分野と講演論文数

<table>
<thead>
<tr>
<th>Topics</th>
<th>Oral</th>
<th>Poster</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Cryophysics, Cryoengineering</td>
<td>14</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>A2 Liquefaction & Separation of Gases</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B1 Thermodynamics & Transfer Processes</td>
<td>149</td>
<td>23</td>
<td>172</td>
</tr>
<tr>
<td>B2 Refrigerating Equipment</td>
<td>135</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>C1 Cryobiology, Cryomedicine</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>C2 Food Science & Engineering</td>
<td>23</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>D1 Refrigerated Storage</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>D2 Refrigerated Transport</td>
<td>15</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>E1 Air Conditioning</td>
<td>51</td>
<td>18</td>
<td>69</td>
</tr>
<tr>
<td>E2 Heat Pumps, Energy Recovery</td>
<td>73</td>
<td>22</td>
<td>95</td>
</tr>
<tr>
<td>S Sustainable and High Performance Buildings</td>
<td>27</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>523</td>
<td>120</td>
<td>643</td>
</tr>
</tbody>
</table>

表3 ワークショップのテーマと講演数

<table>
<thead>
<tr>
<th>WS</th>
<th>タイトル</th>
<th>講演数</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS1</td>
<td>Progress of Sorption Systems in Japan</td>
<td>8</td>
</tr>
<tr>
<td>WS2</td>
<td>Heating and Power From Low Temperature Heat</td>
<td>6</td>
</tr>
<tr>
<td>WS3</td>
<td>Heat Pump Systems R&D by NEDO</td>
<td>5</td>
</tr>
<tr>
<td>WS4</td>
<td>Low GWP Refrigerants: Joint International Research Opportunities</td>
<td>8</td>
</tr>
<tr>
<td>WS5</td>
<td>IEA HPP Annex 41 - Cold Climate Heat Pumps</td>
<td>12</td>
</tr>
<tr>
<td>WS6</td>
<td>Evaluating Low-GWP Refrigerants for Air-Conditioning Industry in High Ambient Temperature Countries</td>
<td>4</td>
</tr>
<tr>
<td>WS7</td>
<td>Current Global Status of Transition to Lower GWP Alternatives by Laws and Regulations</td>
<td>2</td>
</tr>
<tr>
<td>WS8</td>
<td>Database and Simulation Tools for Refrigeration on Cold Chain: Frisbee Database and Tools</td>
<td>6</td>
</tr>
<tr>
<td>WS9</td>
<td>Risk Assessment of Mildly Flammable Refrigerants</td>
<td>9</td>
</tr>
<tr>
<td>WS10</td>
<td>Sustainable Innovation in Refrigeration Air Conditioning and Heat</td>
<td>8</td>
</tr>
<tr>
<td>WS12</td>
<td>ELiCiT EU Project</td>
<td>5</td>
</tr>
<tr>
<td>WS13</td>
<td>Magnetic Refrigeration for Commercial Refrigerated Appliances</td>
<td>4</td>
</tr>
<tr>
<td>WS14</td>
<td>Magnetic Refrigeration: Materials & Systems For Commercialization</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>83</td>
</tr>
</tbody>
</table>
文化行事

開会式の前日 8 月 17 日（月）に、横浜市民フォーラム「冷凍食品はここまで美味しくなる！」が開催され、80 人の参加を得て、翌日に NHK の番組「あさイチ」で放映された。さらに、8 月 19 日（水）および 20 日（木）に開催したティーセレモニーには、約 200 人の参加者があり、日本文化を多くの外国人に紹介できた。

開会式の前日 8 月 17 日（月）に歓迎レセプションを開催し、8 月 20 日（木）に学生および若手研究者のレセプションを開催し、8 月 21 日（金）には特別晩餐会を開催した。写真 4 に特別晩餐会における鏡割りの様子を示す。10 人着席できる円卓を 90 も設置した全景は壮観だった。

展示

展示は IIR と日本冷凍空調学会を含む 27 団体が行った。写真 5 に IIR の展示ブースを示す。

テクニカルツアー

6 節所で開催されたテクニカルツアーの一覧を表 4 に示す。参加者総数は 79 人であった。

TV-I	MINATOMIRAI 21 District Heating and Cooling System
TV-II	Tokyo Sky Tree District Heating and Cooling System
TV-III	Home Appliance Recycling Factory HYPER CYCLE SYSTEMS CORPORATION Head Factory
TV-IV	Refrigeration and Heating System Building Facility Tokyo Denki University Tokyo Senju Campus
TV-V	KIRIN Beer Yokohama Work (Kirin Brewery Co., Ltd. - Yokohama Brewery)
TV-VI	Nichirei Foods the No.2 Funabashi Plant

3. おわりに

プラハで開催された前回の ICR2011 において、日本は次回開催地としてチェコから IIR の旗を渡された。東日本大震災の直後であったが、香川登組織委員会議長・実行委員長（防衛大教授）は、ICR2015 では復興した日本の姿を見せる力強く宣言された。それから、4 年を経て、日本は ICR2015 を盛会裏に開催することができた。

次回の ICR2019 は、カナダのモントリオールで開催される。写真 6 は、ICR2015 開会式で、Didier Coulomb IIR 事務局長が ICR2019 の紹介を行っている場面である。

なお、小職は、ICR2015 実行委員会で財務・募金担当を勤め、組織委員会では 4 人の副議長のうちの一人に過ぎない。ICR2015 全体の報告を小職が行うことは僭越と思われるが、ご容赦願いたい。

参考文献

1. はじめに
“the whole of Europe was illuminated by the light of science which emanated from Paris during the first third of this century.”
確かに19世紀初頭は、イギリスやドイツもさることながらフランスの科学が隆盛を極めていた。数学・物理・化学・工学などの分野で思いつくフラ
ンスの巨人の名前は枚挙に暇がない。そこで、これらの巨人との出会いを求めて、筆者がヨーロッパでのフライト乗り継ぎ時間等を有効利用してパリに立ち寄った記録から、表面的ではあるが写真を中心に紹介させていただきたいと思う。以下、
・2008年8月 / 2015年9月：Musée des Arts et Métiers（工芸・技術博物館），
・2012年9月：École Nationale des Ponts et Chaussées（国立土木学校）
・2010年5月 / 2011年9月：École Polytechnique（エコール・ポリテクニーク）
であるため若干古い情報も混在しているが、大き
な変化はないと思うのでお許しいただきたい。

2. Musée des Arts et Métiers
3区（付図1参照）の地下鉄 Arts et Métiers駅の出口からすぐのところ、Prieuré Saint-Martin-des-Champs（サン＝マルタン＝デ＝ジャン小修道院）を利用した工芸・技術博物館がある（図1）。同館には日本語のパンフレットも用意されていて「1794年、“新しい便利な発明品の保管所”としてグレゴワール神父によって創立されました。」とある。2000年に改築された同館には文字通り各時代を代
表する発明品や模型など3000点以上が展示されている。とりわけ印象深いものを年代順に紹介する
と、Antoine- Laurent de Lavoisier（1743–1794）の実

図1 Musée des Arts et Métiers

図2 Lavoisier (1743–1794) の実験室

図3 Cugnot の砲車 (1770)
といわれる Joseph Cugnot の砲車（1770）（図3）、 Jean-Joseph Étienne Lenoir の2ストローク内燃機関（1861）（図4）、Clément Ader の Avion III（1897）（図5）などが挙げられる。さらにスーパーコンピューターの父 Seymour Roger Cray（1925–1996）の Cray-2（1985）（図6）もあり、冷媒 Fluorinert で満たした容器にジャポ漬けするという冷却法は革新的だった。

3. École Nationale des Ponts et Chaussées
フランス特有の高度な専門職養成機関である Grandes Écoles（グランゼコール）の中でも一番早く、1747年に Louis XV により設立されたのが、École Nationale des Ponts et Chaussées（ENPC）である。

ここを目指したのは他でもない Claude Louis Marie Henri Navier（1785–1836）に会いにいくためだ。Navier–Stokes 方程式で有名な Navier は当時の最先端の橋梁技術者であった [3]。同校の図書館で Navier の像などがないかとたずねたら、専門の方を電話で呼び出していた。ほどなくして現れた美人が図書館アーカイブ部門長の Anne Lacourt さんだった。そして地下倉庫に案内され、多数の巨人の像とめぐり会った（図8）。

4. École Polytechnique

1794年に Gaspar Monge (1746–1818) と Lazare Nicolas Marguerite Carnot (1753–1823) によって創立された École Polytechnique は ENPC と並ぶ名門である。Lazare Carnot は、数学者としての業績に加え、フランス革命戦争時の軍人・政治家としても活躍した。Lazare Carnot の子孫たちも熱力学第2法則の Sadi Carnot (後出) をはじめとして、20世紀初頭まで諸分野で活躍した。

同校にはパリ中心部から鉄道 RER B4で南南西に16km ほどの Massy Palaiseau 駅 (付図2) で下車、南東側に出て図12に示す路線図のバスでアクセスできる。巨大で高天井のメインホール (図13) には、巨人たちの多くの像が壁に沿って並んでいる。

参考文献

http://archive.org/details/cu31924014597771

（追記：本稿を10月に執筆後，11月13日夜同時テロが発生し多数の犠牲者が出たことは誠に遺憾である。）
<table>
<thead>
<tr>
<th>開催日</th>
<th>行事名</th>
<th>申込締切</th>
<th>原稿締切</th>
<th>周刊号</th>
<th>編載号</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月24(火) 26(木)</td>
<td>第53回日本伝熱シンポジウム (開催場所：グランキューブ大阪（大阪府立大学会議場))</td>
<td>　</td>
<td>　</td>
<td>　</td>
<td>　</td>
</tr>
<tr>
<td>月</td>
<td>日付</td>
<td>イベント</td>
<td>開催場所</td>
<td>連絡先</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>15日(水)</td>
<td>第29回数値流体力学シンポジウム</td>
<td>九州大学筑駒キャンパス</td>
<td>Tel: 092-583-7776 Fax: 092-583-7779 E-mail: tananori@riam.kyushu-u.ac.jp</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>16日(木)</td>
<td>第21回可視化フォロニア「PSP/TSP講習会」2015～蛍光機能による定量可視化</td>
<td>LMJ東京研究センター</td>
<td>Tel: 03-3465-1234 Fax: 03-3465-1235 E-mail: s.someya@aist.go.jp</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>17日(水)</td>
<td>第24回数値流体力学シンポジウム</td>
<td>東京大学豊島キャンパス</td>
<td>Tel: 03-581-3241 Fax: 03-581-5585 E-mail: isets15@intergroup.co.jp</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>27日(金)</td>
<td>ISETS'15 エコトビア科学に関する国際シンポジウム2015</td>
<td>名古屋大学</td>
<td>Tel: 052-581-3241 Fax: 052-581-5585 E-mail: isets15@intergroup.co.jp</td>
<td></td>
</tr>
<tr>
<td>2016年</td>
<td>1月</td>
<td>21日(木)</td>
<td>第44回ガスタービンセミナー</td>
<td>東京大学板橋キャンパス</td>
<td>公益社団法人 日本ガスタービン学会 E-mail: gtsj-office@gtsj.org</td>
</tr>
<tr>
<td>8月</td>
<td>8日(月)</td>
<td>第20回国際乾燥シンポジウム(IDS2016)</td>
<td>戸田市長良川国際会議場</td>
<td>Tel: 050-293-2532 E-mail: yitaya@gifu-u.ac.jp</td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>29日(土)</td>
<td>The 5th International Conference on Human-Environment System(ICHES2016 Nagoya)</td>
<td>名古屋大学</td>
<td>E-mail: iches2016office@davinci.nuac.nagoya-u.ac.jp</td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>1日(火)</td>
<td>The 11th International Symposium on Advence Science and Technology in Experimental Mechanics(11th ISEM'16-Ho Chi Minh, Vietnam)</td>
<td>ベトナムホイチミン</td>
<td>Tel: 025-368-9310 Fax: 025-368-9309 E-mail: office-isem@clg.nagoya-u.ac.jp</td>
<td></td>
</tr>
</tbody>
</table>
第53回日本伝熱シンポジウム研究発表論文募集

第53回日本伝熱シンポジウム実行委員会
委員長 吉田篤正
幹事 木下進一

開催日：平成28年5月24日（火）～5月26日（木）
会場：グランキューブ大阪（大阪府立国際会議場、http://www.gco.co.jp）
所在地 〒530-0005 大阪市北区中之島5丁目3番1号 電話 06-4803-5555
アクセス 京阪電鉄中之島線・中之島（大阪国際会議場）駅すぐ
JR大阪環状線・福島駅より徒歩約15分
阪神電鉄本線・福島駅より徒歩15分
大阪市中央公会堂（http://osaka-chookokaido.jp）（重要文化財）
所在地 〒530-0005 大阪市北区中之島1丁目1番27号 電話 06-6208-2002
アクセス 地下鉄御堂筋線／京阪電鉄・淀屋橋駅より徒歩約5分
京阪電鉄中之島線・なにわ橋駅より徒歩約1分

講演申込締切：平成28年1月15日（金）
講演論文原稿提出締切：平成28年3月11日（金）
事前参加申込締切：平成28年4月8日（金）

ホームページ URL：http://htsj-conf.org/symp2016/

シンポジウムの形式
- 講演発表形式として
 a) 一般セッション（口頭発表）
 b) オーガナイズドセッション（口頭発表）
 c) 学生および若手研究者を対象とする優秀プレゼンテーション賞セッションを実施します。
- 1講演あたりの割当時間は、一般セッションでは15分（発表10分、個別討論5分）で、各セッションの最後に総合討論の時間（5分×セッション内の講演件数）を設ける予定です。オーガナイズドセッションについては、オーガナイザーの指示に従ってください。
- 優秀プレゼンテーション賞セッションについては、本号掲載のお知らせ「優秀プレゼンテーション賞（第53回日本伝熱シンポジウム）について」をご参照ください。

参加費等
- シンポジウム参加費
 会員一般 事前申込：12,000円、会場申込：15,000円
 非会員一般 事前申込：15,000円、会場申込：18,000円
 会員学生 事前申込：5,000円、会場申込：7,000円
 非会員学生 事前申込：7,000円、会場申込：8,000円
 ※特別賛助会員は1口につき3名、賛助会員は1口につき1名、参加費が無料になります。
- 講演論文集CD-ROM
 日本伝熱学会会員：無料（講演論文はウェブ上で事前に公開します。参加者は当日、講演論文集CD-ROMを配布します。参加されない会員のうち希望者には講演論文集CD-ROMを事前にお送りします。）
 非会員：9,600円（会場受付にて日本伝熱学会に入会を申し込まれる場合は無料となります。）

懇親会
- 開催日：平成28年5月25日（水）
- 会場：大阪市中央公会堂
- 参加費：
 一般 事前申込：8,000円、会場申込：10,000円、同伴配偶者無料
 学生 事前申込：4,000円、会場申込：5,000円
講演申込方法、講演論文集、執筆要綱

【研究発表申込方法】
- 原則としてウェブによる申込に限らせていただきます。本シンポジウムで準備するウェブサイトから必要なデータを入力してください。ウェブによる申込ができない場合には、実行委員会事務局にお問い合わせください。
- 申込の際に、一般セッション、オーガナイズドセッション、優秀プレゼンテーション賞セッションのいずれで発表するかを選択してください。優秀プレゼンテーション賞セッションにお申込みの場合には、本号掲載のお知らせ「優秀プレゼンテーション賞セッション（第53回日本伝熱シンポジウム）について」をご参照ください。
- 発表申込時に、論文要旨（日本語で200〜250字）を入力してください。講演論文集の抄録として科学技術振興機構（JST）のデータベースに登録します。
- 講演発表申込は、講演者1名につき1題目とさせていただきます。
- 発表の採否およびセッションへの振り分けは、実行委員会にご一任ください。

【講演論文集 CD-ROM】
- 講演論文集 CD-ROM を参加者に当日配布します。なお、講演論文集 CD-ROM は参加できなかった会員にも希望があれば配布しますので、シンポジウム終了後に日本伝熱学会事務局にお申込みください。
- 講演論文の長さは1題目当たり A4 サイズで4〜6ページです。講演論文の作成様式は、1段組み×50字×46行です。カラーの使用が可能で、ファイル容量は最大で2MBまでとし、動画は含まないものとします。
- 講演論文原稿は、PDFファイルで本シンポジウムのホームページから提出してください。
- 講演論文締切日までに提出されなかった講演論文は、講演論文集 CD-ROM およびウェブに掲載されません。十分にご注意ください。

【執筆要綱】
- 講演論文は以下に従って作成してください。また、書式の詳細ならびにテンプレート用の電子ファイルは、シンポジウムのホームページをご参照ください。

表題部分の書式： 原稿は、以下の四角い部に示すように、和文表題、和文副題、英文表題、英文副題、英文著者名（会員資格、著者名、所属の略称）、英文著者名、英文所属機関・所在地、英文アブストラクト、英文キーワードの順に、幅150mmに取まるようにレイアウトしてください。連名者がある場合には、講演者の前に*印をつけ、英文の所属機関・所在地についても上付き数字で区別してください。
- 論文表題および著者名は、講演申込時のデータと同じものを同じ順序で書いてください。講演申込時のデータと異なる場合には、目次や索引に反映されないことがあります。
- 本文の書式： 本文は表題部分に続いて、10ポイント明朝体の1段組み（1行50字程度）、1ページ当たり46行を目安として作成してください。
- 図表： 図表の記号およびキャプションは英語で書いてください。カラー表示が可能です。
- 参考文献： 参考文献は本文中の引用箇所の右肩に小括弧をつけた番号で表し、本文の末尾に次のようにまとめて列記してください。
- PDFファイルへの変換： PDFファイル作成のためのファイル変換時には、「フォントの埋め込みを行う」よう設定してください。提出前に必ず、変換後のPDF原稿を印刷して確認してください。
【講演論文の公開日】

- 講演論文は会員を対象にパスワードを配布し、シンポジウム開催日の1週間程前からウェブ上で公開します。従って、特許に関わる公知日はシンポジウム開催日よりも早くなりますので、ご注意ください。
- 会員が当該講演論文を後日原著論文として学術論文誌等に投稿される場合に配慮し、本講演論文集が限られた範囲に配布されたものであることを明確にすべく、シンポジウム終了後、一定期間を経て講演論文の公開を終了します。

【参加費等の支払い方法】

- シンポジウムのホームページから事前参加登録を行った後に、本紙に挟み込まれた「払込取扱票」を用い、以下の記入例を参考にしてお支払いください。
- 参加費等の払込は「事前申込完了」とします。ホームページからの登録だけでは「完了」ではありません。払込が平成28年4月8日より後となった場合は会場当日申込扱いとし、会場受付にて差額をお支払いいただきます。
- 銀行より振込まれる場合は、下記のゆうちょ銀行口座にお振込みください。その際、必ず１件ずつとし、氏名の前に参加登録ID番号を付けてください。
 - 店名（店番）：四〇八（ヨンゼロハチ）店（408）
 - 預金種目：普通
 - 口座番号：4818989
 - 口座名称（漢字）：第53回日本伝熱シンポジウム実行委員会
 - 口座名称（カナ）：ダイゴジュウサンカイニホンデンネツシンポジウムジッコウイインカイ

【ご注意】

- 講演申込の取消および講演論文原稿の差し替えは、シンポジウムの準備と運営に支障をきたしますのでご遠慮ください。
- 論文題目と著者名が、講演申込時と論文提出時で相違しないように特にご注意ください。
- 口頭発表用として実行委員会事務局が準備する機器は、原則としてプロジェクタのみとさせていただきます。パソコンやビデオカメラは各自ご持参ください。
- 参加費、懇親会費等は参加取消の場合でも返金いたしません。
お知らせ

一部シンポジウムに関する最新情報については、随時更新するホームページでご確認ください。

その他、ご不明の点がありましたら、実行委員会事務局までe-mailまたはFAXでお問い合わせください。

【お問い合わせ先】
第53回日本伝熱シンポジウム実行委員会事務局
大阪府立大学 大学院工学研究科 機械工学分野内
Email: symp2016@htsj-conf.org FAX: 072-254-9231

- お支払いいただく項目を〇で囲んでください。- 払込手数料はご負担ください
「通信欄」の合計金額をご記入ください

1枚の用紙で複数の参加者の登録が可能です。
本登録の代表者のご所属の連絡先・お名前・電話番号を「ご依頼人」の欄にご記入ください。

・ 本シンポジウムに関する最新情報については、随時更新するホームページでご確認ください。
・ その他、ご不明の点がありましたら、実行委員会事務局までe-mailまたはFAXでお問い合わせください。

【お問い合わせ先】
第53回日本伝熱シンポジウム実行委員会事務局
大阪府立大学 大学院工学研究科 機械工学分野内
Email: symp2016@htsj-conf.org FAX: 072-254-9231
優秀プレゼンテーション賞（第53回日本伝熱シンポジウム）について

日本伝熱学会 学生会委員会
委員長 桃木 悟

第53回日本伝熱シンポジウムでは、下記の要領で、学生および若手研究者を対象とした優秀プレゼンテーション賞セッションを設けます。日頃の研鑽の成果を披露するチャンスとして、奮ってご応募下さい。

開催日：平成28年5月24日（火）シンポジウム第1日

発表形式：発表者1名あたり、発表内容をまとめた1枚のアピールスライド提出とポスタープレゼンテーションを行う形式をとる予定です。今回より口頭による3分間のショートプレゼンテーションは行わない予定です。詳細については、決定次第、シンポジウムのホームページに掲載いたします。

対象：企業・大学・研究機関等の技術者・研究者で、平成28年3月31日現在で28歳以下の者、または、申込当日に学生である者（ただし、社会人大学院生を除く）。

応募資格：発表時（審査時）に、日本伝熱学会の会員（正員・学生員）であること、または入会申込中であること。なお、本セッションで発表する方は、応募資格を必ず満たす必要があります。また、過去に本賞を受賞された方は応募することはできません。

応募件数：指導教員または研究グループ長等あたり、1名（1件）とします。

応募方法：第53回日本伝熱シンポジウム発表申込時に、本号掲載の研究発表申込方法に従って、“優秀プレゼンテーション賞”の項目を選択し、“指導者氏名”および“研究分野の分類番号”を入力してください。なお、講演論文原稿の様式については一般セッションと同様のものとします。

審査・選考方法：複数名の審査員による評価に基づいて選考し、受賞者を決定します。

表彰：受賞者はシンポジウム第2日の学会総会で表彰されます。

伝熱 2016年1月 - 73 - J. HTSJ, Vol. 55, No. 230
日本伝熱学会主催 第4回 国際伝熱フォーラム
International Forum on Heat Transfer (IFHT2016)

趣旨
日本伝熱学会は、世界最大かつ最もアクティブな伝熱の研究者・技術者集団として、世界中の研究者が集い、新しい伝熱研究のトレンドを生み出す国際伝熱フォーラムを開催します。2004年に京都でフォーラムが始まり、2008年に東京、2012年に長崎で第3回のフォーラムが開催され、毎回150件を超える発表で盛り上がりを見せています。第4回は、2016年仙台でフォーラムを開催します。伝熱分野の最先端を走る研究者によるキーノート講演も企画しています。一般セッションでは伝熱の広い分野から発表を募集します。多くの皆様のご発表及びご参加をお願い致します。

開催日時 2016年11月2日（水）～4日（金）
会場 仙台国際センター
〒980-0856 仙台市青葉区青葉山無番地（http://www.aobayama.jp/）

キーノート講演
Yoshinori Itaya Gifu University, Japan
Arun Majumdar Stanford University, USA
Young-Hoon Song Korea Institute of Machinery & Materials, Korea
W. Q. Tao Xian Jiao Tong University, China
Shohji Tsushima Osaka University, Japan
Evelyn N. Wang MIT, USA

フォーラム構成
・キーノート講演
・ポスターセッション（150件を予定：ショットガン形式の口頭発表＋ポスター）
・The Nukiyama Memorial Award 受賞者による記念講演

スケジュール
2016年4月29日 Short abstract（発表申し込み）提出締切
5月31日 発表申し込みの受理通知
7月29日 Full manuscript（Copyrightは著者が保持）提出締切（A4、2〜6ページ）
8月25日 Full manuscript 受理通知
9月15日 Final manuscript 提出締切
9月30日 事前参加申込締切

Webページ 最新情報は、http://ifht2016.orgでご確認ください。

問い合わせ先 組織委員会委員長 小原 拓
〒980-8577 仙台市青葉区片平2-1-1
東北大学 流体科学研究所
Tel&FAX: 022-217-5277 E-mail: ifht2016@microheat.ifstohoku.ac.jp

実行委員会委員長 麓 耕二
〒036-8561 弘前市文京町3
弘前大学 大学院理工学研究科 知能機械工学専攻
Tel&FAX: 0172-39-3676 E-mail: kfumoto@hirosaki-u.ac.jp
編集出版部会からのお知らせ
一各種行事・広告などの掲載についてー

インターネットの普及により情報発信・交換能力の比類なき進展がもたらされました。一方、ハードコピーとしての学会誌には、アーカイブ的な価値のある内容を手にとって熟読できる点や、一連のページを眺めて全貌が容易に理解できる点など、いくら電子媒体が発達してもかなわない長所があるのではないかと思います。ただし、学会誌の印刷・発送には多額の経費も伴いますので、当部会ではこのほど、密度のより高い誌面、すなわちハードコピーとしてぜひとも残すべき内容を厳選し、インターネット（HP：ホームページ、ML：メーリングリスト）で扱う情報との棲み分けをした編集方針を検討いたしました。
この結果、これまで会告ページで取り扱ってきた各種行事・広告などの掲載につき、以下のような方針で対応させていただきたく、ご理解とご協力をお願いする次第です。

<table>
<thead>
<tr>
<th>対象</th>
<th>対応</th>
<th>具体的な手続き（電子メールでの連絡を前提としています）</th>
</tr>
</thead>
<tbody>
<tr>
<td>本会（支部）主催による行事</td>
<td>無条件で詳細を、会誌とHPに掲載、MLでも配信</td>
<td>申込者は、記事を総務担当副会長補佐協議員（ML担当）、広報委員会委員長（HP担当）あるいは編集出版部会長（会誌担当）へ送信してください。</td>
</tr>
<tr>
<td>関係学会や本会員が関係する組織による内、外の会議・シンポジウム・セミナー</td>
<td>条件付き掲載 会誌：1件当たり4分の1ページ程度で掲載（無料） HP：行事カレンダーに掲載してリンク形成（無料） ML：条件付き配信（無料）</td>
<td>申込者は、まず内容を説明する資料を総務担当副会長補佐協議員に送信してください。審議の結果、掲載可となった場合には総務担当副会長補佐協議員より申込者にその旨通知しますので、申込者は記事を編集出版部会長（会誌担当）と広報委員会委員長（HP担当）に送信してください。</td>
</tr>
<tr>
<td>大学や公的研究機関の人事公募（伝熱に関係のある分野に限る）</td>
<td>会誌：掲載せず HP：条件付き掲載（無料） ML：条件付き配信（無料）</td>
<td>申込者は、公募内容を説明する資料を総務担当副会長補佐協議員に送信してください。審議の結果、掲載可となった場合には総務担当副会長補佐協議員より申込者にその旨通知しますので、申込者は記事を広報委員会委員長（HP担当）に送信してください。</td>
</tr>
<tr>
<td>一般広告</td>
<td>会誌：条件付き掲載（有料） HP：条件付き掲載（バナー広告のみ、有料）</td>
<td>申込者は、編集出版部会長（会誌担当）または広報委員会委員長（HPバナー広告担当）に広告内容を送信してください。掲載可となった場合には編集出版部会長または広報委員会委員長より申込者にその旨通知しますので、申込者は原稿を編集出版部会長または広報委員会委員長に送信してください。掲載料支払い手続きについては事務局からご連絡いたします。バナー広告の取り扱いについてはhttp://www.htsj.or.jp/banner.pdfをご参照下さい。</td>
</tr>
</tbody>
</table>

【連絡先】
・總務部会長：小野直樹（芝浦工業大学）：naokiono@sic.shibaura-it.ac.jp
・編集出版部会長：関谷真司（三重大学）：hirota@mach.mie-u.ac.jp
・広報委員会委員長：田口良智（慶應義塾大学）：tag@sd.keio.ac.jp
・総務担当副会長補佐協議員：篠原敬（東京工業大学）：sasabe.t.ab@m.titech.ac.jp
・事務局：大澤毅生・村松佳子：office@htsj.or.jp

【注意】
・原稿はWordファイルまたはTextファイルでお願いします。
・HPはメンテナンスの都合上、掲載は申込月の翌月、また削除も希望掲載期限の翌月程度の時間遅れがあることをご了承願います。
・MLでは、原則としてテキスト文の送信となります。pdf等の添付ファイルで送信をお希望される場合はご相談ください。

伝熱 2016年1月 - 75 - J. HTSJ, Vol. 55, No. 230
事務局からの連絡

54 期入会（2015.9.16〜2015.11.11）正 3 名

<table>
<thead>
<tr>
<th>資格</th>
<th>氏名</th>
<th>所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>篠原 竜太郎</td>
<td>スズキ株式会社</td>
</tr>
<tr>
<td>正</td>
<td>佐々木 齋人</td>
<td>株式会社日阪製作所</td>
</tr>
<tr>
<td>正</td>
<td>山田 格</td>
<td>名古屋工業大学 大学院 工学研究科</td>
</tr>
</tbody>
</table>

正誤表
「伝熱」2015年10月号（Vol. 54, No. 229），追悼（p.1，左カラム，下から8，9行目）
熱流束センサー

熱流束センサーは、熱エネルギーの移動密度（W/cm²）に比例した直流電圧を出力します。
弊社の製品は、大変手軽に高速・高精度で熱流量の測定をすることができます。
特に応答速度の早いこと、センサーからの出力レベルが高いことが特徴で、熱流束マイクロセンサー（HFM）では、応答速度最高6マイクロ秒を達成しています。

熱流束マイクロセンサー

センサー本体の構造は、精密フィルム・ディスクの中心と周囲の温度差を測定する、抵抗型熱電対を組み合わせています。フィルム・ディスクはコンスタタンタンで作られており、鋼製の円柱形ヒートシンクを取り付けられています。水冷式は取付け場所の自由度が高く長時間の測定が可能です。

サーモゲージ

使用例

- エンジン内壁の熱伝達状態観察
- ロケットエンジンのトラバース実験
- ガンプループ熱風洞試験
- 自動車キャリア車載安全試験
- デットエンジン焼却試験
- 燃焼・冷却温度の熱量測定
- 火災実験の摂氏熱電対
- ポーナーなど製品の校正用基準器
- 燃焼性・発火性試験（ISO5657、5658、5660）
- 免疫力試験のフィヤーサーモクモテスト

gSKIN®熱流束センサー

使用例

- 電気・電子機能の発熱・放熱状態測定
- 酸洗浄器の効率計測
- ハイブリッドの放熱状態測定
- 垂直および横断自動車の測定
- 熱変動/熟放射の即時応答測定

熱流束センサーの校正作業をお引き受けいたします。校正証明書は米国国際NISTにトレーサブルです。校正設備の物理的な制約で、引き受けできない場合もあります。ご相談ください。
当社は、独自の高度技術を持つ、海外メーカーの熱計測機器をご提供致しております。

CAPTEC 社 (フランス)
CAPTEC (キャプテック) 社は、独自の高度技術により、低熱抵抗で高精度な熱流束センサーを開発・製造致しております。環境温度が変化しても感度は常に一定で、熱流束値に比例した電圧を高精度に出力します。

- **熱流束センサー**
 - サイズ：5 x 5mm～300 x 300mm
 - 厚み：0.4mm（平面用・曲面用）
 - 温度範囲：−200～200°C
 - 応答速度：約 200ms
 - オプション：温度計測用熱電対内蔵
 - 形状：正方形・長方形・円形
 - 特注品：高圧用・防水加工

MEDTHERM 社 (アメリカ)
MEDTHERM (メディアム) 社は、これまで30年以上にわたり、高品質の熱流束及び超高速応答の熱電対を提供してまいりました。

- **熱流計／放射計**
 - 熱流束範囲：0.2～4000Btu/hr'Fsec（フルスケール）
 - サイズ：1/16インチ（約1.6mm）～1インチ（約25.4mm）
 - 最高温度：200°C（水冷なし）／1500°C（水冷）
 - 出力信号：0～10mA（DC・線形出力）
 - 直線性：±2%（フルスケールに対して）

超高速応答同軸熱電対
本同軸型熱電対は、第1熱電対のチューブの中に第2熱電対ワイヤーが挿入された同軸構造になっています。

- **主な用途**
 - 表面温度及び表面熱流束計測
 - 風洞試験・エンジンリンダーエアコンプレッサー等

- **最小プローブ径**
 - 0.015インチ（約0.39mm）

ITTI 社 (アメリカ)
ITT (International Thermal Instrument Company) 社は、1969年の設立以来、高温用熱流束や火災強度熱流計など、特殊な用途に対応した製品を提供しています。特注品の設計・製造も承っております。

高温用熱流束
- **最高温度**：980°C
- **応答速度**：0.1s
- **直径**：8mm～25.5mm 厚み：2.5mm

水冷式 火災強度熱流計
- **最高温度**：1900°C
- **応答速度**：0.1s
- **最大熱流束レンジ**：0～3000W/cm²

有限会社 テクノオフィス
〒225-0011 神奈川県横浜市青葉区あざみ野3-20-8-B
TEL. 045-901-9861 FAX. 045-901-9522
URL: http://www.techno-office.com

本広告に掲載されている内容は2010年9月現在のもので、製品の仕様は予告なく変更される場合があります。
本学会元会長の長野靖尚先生ご逝去の悲しみが癒えないうちに、笠木伸英先生の追悼文を本号に掲載することになるとは、未だに信じられない思いがします。両先生のご冥福を心からお祈り申し上げます。

今月号の特集は、鈴木雄二教授の企画による「新しいエネルギー変換」です。序文にもありますように、東日本大震災以降、エネルギーの安全保障は国民の最大関心事の一つであり、本学会に所属する多くの方もエネルギーに係わる様々な研究開発に取り組まれているものと思います。本号の編集中にも、川内原発2号機の再稼働の一方で「もんじゅ」に対する原子力規制委員会の勧告など、今後の日本のエネルギー供給に大きな影響を及ぼしそうなニュースが頻繁に飛び込んで参りました。そのような中、10月号では低品位の排熱を有効に利用する手法として、化学反応や物質移動を伴う熱利用機器に関する特集を組みました。本号においては、「高付加価値のエネルギー」を創り出す最先端の手法、原理について、ミクロな視点から5名の先生方にそれぞれ判りやすく、また極めて興味深い解説をして頂きました。

また、これらの特集記事に加えて、隔年で開催される関西伝熱セミナーおよび初の日本開催となった国際冷凍会議の報告、熱物質輸送国際センターの現状と課題に関する報告、恒例となりつつある「博物館めぐり」など、こちらもそれぞれ大変興味深い記事をご寄稿顶きました。最後に、お忙しいところ本号に快くご寄稿いただきました著者の皆様にこの場を借りて厚くお礼申し上げます。

廣田 真史（三重大学）

Hirota, Masafumi (Mie University)