

Journal of the Heat Transfer Society of Japan

ISSN 1344-8692 Vol. 59, No. 246 2020. 1

Thermal Science and Engineering

ISSN 0918-9963 Vol. 28, No. 1 2020. 1

◆特集:接触熱抵抗の評価と低減 -基礎研究と実用化の進展-

左: 圧力測定フィルムによる接触面における局所接触圧力 pcell 分布の評価方法 右: うねりが有る Al2O3 (96%) とうねりが無い A5052H34 をグリースレス接触させた場合の不均一接 触圧力の圧力測定フィルムによる評価方法と測定結果例.

(特集記事「圧力測定フィルムを利用した接触熱抵抗の評価方法(青木 洋稔)」より)

左: 感熱印刷のイメージ図 右: 対応する熱回路網

ドットヒータ(微細な抵抗体)が多数実装されたサーマルヘッドと呼ばれる印刷機とプラテンローラの間を,色素を塗布した感熱紙が通過する.このとき,印刷する文字や画像に応じ,対応するドットヒータを通電加熱させ感熱紙に熱を加える.感熱紙に塗布された色素が熱により変色し,その結果,用紙に文字や画像が印刷される.

(特集記事「感熱印刷プロセスに影響する接触熱抵抗の評価(福江 高志)」より)

No 246

January

伝 熱

目 次

〈巻頭グラビア〉

青木 洋稔(KOA 株式会社)·福江 高志(金沢工業大学) ………表紙裏

〈特集:接触熱抵抗の評価と低減 -基礎研究と実用化の進展-〉

電子機器における接触熱抵抗予測と接触面での熱縮流の影響

…………木伏 理沙子(山口東京理科大学) ……… 14 電子機器における接触熱抵抗の低減技術

〈ヒストリーQ〉

〈エデュケーション Q〉

〈報告〉

〈お知らせ〉

〈編集出版部会ノート〉	71
• 事務局からの連絡	67
優秀プレゼンテーション賞(第 57 回日本伝熱シンポジウム)について	66
第 57 回日本伝熱シンポジウムのご案内	60

Vol.59, No. 246, January 2020

CONTENTS

<opening-page gravure:="" heat-page=""></opening-page>	
Hirotoshi AOKI (KOA Corporation)	
Takashi FUKUE (Kanazawa Institute of Technology) Opening F	'age
<special and="" contact="" evaluation="" issue:="" of="" reduction="" resistance<br="" thermal="">— Progress in Basic Research and Practical Application —></special>	
Prediction of Contact Thermal Resistance in Electronics and Constriction Heat Flow at Contact Surface Tomoyuki HATAKEYAMA, Yoshiki HYODO (Toyama Prefectural University)	1
Measurement and Evaluation of Thermal Contact Resistance by Unsteady-State Method Atsumasa YOSHIDA, Kakeru KAGATA (Osaka Prefecture University)	7
Verification of the Reduction Effect of Contact Thermal Resistance	
with TIM and Contact Pressure in High Heat Flux Risako KIBUSHI (Sanyo-Onoda City University)	14
Technique for Reducing Thermal Contact Resistance of Electronic Control Unit Takuya SHINODA (DENSO CORPORATION),	
Ryuta YASUI (MEITEC CORPORATION)	19
Evaluation method of contact thermal resistance using pressure measurement film	25
Hirotoshi AOKI (KOA Corporation)	25
Evaluation of Effects of Contact Thermal Resistance on Direct Thermal Printing Process Takashi FUKUE (Kanazawa Institute of Technology)	31
<history q=""></history>	
Footprints of the relationship between humans and heat (Part 6)	
-Development of Awa Indigo and the Relationship between Traditional Indigo Dyeing and Heat- Hiroshi KAWAMURA (Suwa Univ. of Science),	
Kumiko FUNAI (Miki Archives), Osamu NII (Nii Indigo Factory)	37
<education o=""></education>	
Newton's Law of Cooling, Part 3, Experiment on Forced Convection	
Shigenao MARUYAMA (INT, Hachinohe College),	
Syuichi MORIYA (Tohoku University)	46
<conference report=""></conference>	
Report on the 7th Asian Symposium on Computational Heat Transfer and Fluid Flow-2019 (ASCHT2019) Kazuhiko SUGA and Masayuki KANEDA* (Osaka Prefecture University)	52
Report on the Lecture "Measurement Technology, from Foundation and Application of	
Temperature, Heat Flux and Thermal Conductivity Measurement" Kimihito HATORI (Bethel), Yoshihiro KONDO (Hitachi Academy),	
Koji NISHI (Ashikaga University)	55
< Calendar >	50
< Announcements >	59 60
<note board="" editorial="" from="" jhtsj="" the=""></note>	71

電子機器における接触熱抵抗予測と接触面での熱縮流の影響

Prediction of Contact Thermal Resistance in Electronics and Constriction Heat Flow at Contact Surface

> 畠山 友行,兵藤 文紀(富山県立大学) Tomoyuki HATAKEYAMA, Yoshiki HYODO (Toyama Prefectural University) e-mail: hatake@pu-toyama.ac.jp

1. はじめに

電子機器の発熱密度の増大により,電子機器の熱 管理が重要となっているのは周知の事実である.電 子機器の放熱性を高くするためには,発熱部から外 気までの熱抵抗を小さくすることが重要である.電 子機器の内部の熱抵抗を小さくするためには,主に 熱伝導の熱抵抗を小さくすると良い. そのため, 高 熱伝導性のフィラーを樹脂に混入するなど,熱伝導 性の高い絶縁性材料の開発などが盛んに行われて いる.また、冷却部における外気への放熱に関して は, 強制対流を用いた冷却を採用する機器では, 対 流熱伝達の熱抵抗を,自然空冷を行う機器では,対 流熱伝達と輻射の熱抵抗を小さくする必要性が生 じる. そのため, ヒートシンクによる表面積の増大 や、ヒートシンクのフィン形状を工夫するなどして 熱伝達率を高める研究・開発が必要となる. これら の熱抵抗を低減するための研究・開発が進むととも に,存在感を増してきた熱抵抗が,接触熱抵抗であ る. 接触熱抵抗は、固体と固体を物理的に接触させ ることで発生する接触面において生じる熱抵抗で ある. 固体の表面を微視的に観察すると、どれほど よく研磨した面でも微細な凹凸が存在する. [1,2] この微細な凹凸によって,固体同士の物理的な接触 面は、微細な凸部による多数の点接触で構成されて いる.そのため,接触面には多くの空隙部が存在し, 空隙部の存在が熱の輸送を妨げる.その結果として, 接触面に大きな熱抵抗が発生する.通常,我々が利 用する電子機器は大気中で利用されるため,接触面 の空隙部に存在する物質は空気となる.空気は熱伝 導率が非常に小さいため,空気が接触面における熱 輸送の大きな阻害要因となる. つまり, 接触熱抵抗 を小さくするためには,空隙部に存在する空気を他 の熱伝導性の良い物質で置き換えればよく, 接触面 に塗布する熱伝導グリスなどの開発が行われてい る.しかしながら,近年はグリスを塗布した接触面 における接触熱抵抗でも,電子機器の放熱において

問題視されるようになってきた. その要因は, 主に 二つ考えられる.一つは,機器全体の熱抵抗に対し て,接触熱抵抗の占める割合が相対的に大きくなっ てきたためと考えられる. 電子機器の熱管理のため には、機器全体の熱抵抗を小さくする必要がある. 技術の進展に伴い,様々な熱抵抗を小さくした結果, これまで相対的に小さい値であった接触熱抵抗の 占める割合が増大し,問題視されるようになってき たと考えられる.もう一つの要因は、高発熱機器の 需要の増大である.自動車などに利用されるパワー エレクトロニクス機器の需要の増大により、大きな 発熱密度を有するデバイスからの放熱の必要性が 増している.機器の温度上昇は,発熱量に熱抵抗を 乗じることで計算できる.つまり,発熱量が大きく なると、小さな熱抵抗の部位で生じる温度上昇も大 きくなる. 例えば、ある発熱量の接触面で 0.1℃の 温度上昇であったとしても,発熱量が100倍になる と温度上昇は 10℃となる. 電子機器の温度管理で は、シリコンを材料とした半導体を用いる機器の場 合,最も高温になる半導体デバイス部の許容温度が 125℃から 175℃程度であるため、10℃の温度上昇 は無視できない値となる. そのため, 小さな熱抵抗 であっても大きな問題となってしまい, 接触熱抵抗 が問題視されるようになってきたと考えられる. [3]

以上のように、接触熱抵抗は電子機器の放熱にお ける障害である一方で、電子機器を設計する際の温 度予測においても大きな障害となっている.その理 由は、接触熱抵抗が材料の表面粗さや接触圧力など の接触状態によって変化し、予め知ることのできな い値であるからである.数値解析などを用いて機器 の温度を予測する際、機器を構成する電子部品など の内部に関しては、熱伝導率などの物性値を入力す ることが可能である.しかし、接触熱抵抗は部品同 士の接触状態によって変化してしまうため、実際に 機器で利用する際と同じ接触状態を再現して計測 するなど,なんらかの形で計測する必要が生じる. つまり,接触熱抵抗は,設計の初期段階におけるコ ンピュータのみでの機器の温度予測の障害になっ ている.以上のように,接触熱抵抗は,その値自体 を小さくする必要があるとともに,正確な値を予測 することも求められている.本稿では,接触熱抵抗 の予測に関する検討事例を紹介する.

2. 接触熱抵抗の予測式

接触熱抵抗の予測に関しては、橘・佐野川によっ て古くから検討されている.橘・佐野川が提案して いる式は、接触面を簡易的にモデル化し、ユニット セルと呼ばれる簡易モデルにおける熱抵抗を定式 化したものである.ただし、橘・佐野川の式は、原 子力分野での応用を目的として検証されてきたた め、接触圧力が1 MPa 以上の場合での適用が推奨 されている.[4,5]一方で、電子機器においては、 部品の接触圧力が10~1000 kPa であると言われて おり、橘・佐野川の式での接触熱抵抗の予測精度が 保証されていない.以下、橘・佐野川の式の導出を 紹介するとともに、電子機器における接触圧力範囲 での適用可能性を議論する.

図1に,接触面のモデル化のイメージ図を示す. 接触面は,図1(a)のように複雑でランダムな多数の 点接触で構成されている.このような接触面を,図 1(b)に示すようなモデル化により,一定の高さの凸 部が,一定のインターバルで繰り返し並んでいる構 造であると仮定する.更に,繰り返し構造の一部の みを取り出し,これをユニットセルと呼ぶ.

(b) モデル化した接触面

図1 接触面のモデル化

ユニットセル上側の材料を材料1,下側の材料を材料2とする.材料1と材料2の接触部は、材料同士が直接接触している真実接触部と、空隙部によって構成される形となっている.真実接触部の面積をaとし、空隙部も含むユニットセル全体の面積をAとする.材料1および2の真実接触部の高さを z_1 、 z_2 とする.また、材料1、2および空気の熱伝導率を、それぞれ k_1 、 k_2 、 λ とする.

図2 ユニットセルモデル

図3 真実接触部の熱抵抗

このユニットセルモデルにおける, 真実接触部と 空隙部の合成熱抵抗を求める.まず, ユニットセル モデルの接触部では, 図2に示すように, 真実接触 部と空隙部の並列の熱抵抗となっているため, 合計 の熱抵抗は式1のようになる.ここで, *R*_{real}は真実 接触部の熱抵抗, *R*_{air}は空隙部の熱抵抗である.

$$\frac{1}{R} = \frac{1}{R_{real}} + \frac{1}{R_{air}} \tag{1}$$

更に, 真実接触部の熱抵抗は, 図3に示すように 材料1と材料2の直列の熱抵抗となっているため, 合計の熱抵抗は式2のようになる.

$$R_{real} = R_1 + R_2 \tag{2}$$

ここで, *R*₁ と *R*₂ は, それぞれ材料 1 と材料 2 の 熱抵抗である. *R*₁ と *R*₂ は,式 3 および式 4 で算出できる.

$$R_1 = \frac{z_1}{k_1 \frac{a}{A}} \tag{3}$$

$$R_2 = \frac{z_2}{k_2 \frac{a}{A}} \tag{4}$$

これらを式 2 に代入することにより,式 5 を得る.

$$R_{real} = \left(\frac{z_1}{k_1} + \frac{z_2}{k_2}\right)\frac{A}{a} \tag{5}$$

また,空隙部の熱抵抗は,式6で求めることがで きる.

$$R_{air} = \frac{z_1 + z_2}{\left(1 - \frac{a}{A}\right)\lambda} \tag{6}$$

式5と式6を,式1に代入することにより,式7 を得る.

$$R = \frac{1}{\frac{\frac{1}{Z_1} + \frac{Z_2}{R_2}a}{\frac{Z_1}{R_1} + \frac{Z_2}{R_2}a} + \frac{\lambda}{Z_1 + Z_2} \left(1 - \frac{a}{A}\right)}$$
(7)

式 7 が,橘が提案した接触熱抵抗の予測式である.

しかし、この式を用いて算出した値は、実測した 熱抵抗よりも小さな値を示す.その原因は、真実接 触部に流れ込む熱の縮流と、真実接触部から流れ出 す熱の急拡大の影響である.流体と同様に、熱流も 縮流や急拡大(以下,急拡大も含めて縮流と呼ぶ) によって、抵抗が発生する.式7では、これらの影 響が考慮されていないため、実測よりも小さな熱抵 抗が算出されることとなる.そこで、式7をベース として、熱縮流の影響を加味した式8が、佐野川に よって提案された.

$$R = \frac{1}{\frac{\frac{1}{\frac{z_1}{k_1} + \frac{1}{h_0} + \frac{z_2}{k_2}} \frac{a}{A} + \frac{\lambda}{z_1 + z_2} \left(1 - \frac{a}{A}\right)}}$$
(8)

ここで、1/ho が熱縮流の影響を表した項であり、 1/hoは、式9で表される.

$$\frac{1}{h_0} = 2.3 \times 10^{-5} \left(\frac{1}{k_1} + \frac{1}{k_2}\right) \tag{9}$$

また,真実接触部とユニットセルの面積比は,次 式で近似することができる.[1]

$$\frac{a}{A} = \frac{P}{H} \tag{10}$$

ここで, *P*は接触圧力, *H*はヴィッカーズ硬さで ある.(*H*はヴィカーズ硬さ, ブリネル硬さのうち, 軟らかい方という考え方もある)

本稿では,式7を橘の式,式8を橘・佐野川の式と呼ぶ.

先にも記したとおり、これらの式は1 MPa 以上の接触圧力を想定しており、電子機器の接触圧力範囲での適用性の検証が必要である.そこで、電子機器の接触圧力範囲で、接触熱抵抗を実測した結果と式7 および式8 から算出された値とを比較し、式の適用性を検証した.

3. 接触熱抵抗の計測

接触熱抵抗の計測には、富村らが考案した定常法 の熱抵抗計測装置を用いた.[6]図4に、計測装置 全体図を示す.また、図5に、テストセクションの 拡大図を示す.装置は天秤型になっており、重りの 重さを変更することで、テストセクションに印加す る接触圧力を変更することが可能である.テストセ クションは、二本の真鍮製ロッドの間にサンプルを 挟み、上部ロッドの上面をヒータで加熱し、下部ロ ッドの下面を循環冷却水によって冷却された銅ブ ロックで冷却する形になっている.上下ロッドそれ ぞれの、温度勾配を熱電対で計測する.計測された 温度勾配を用いて、サンプル上下面の温度差を求め るとともに、フーリエの法則によってロッド内部を 流れる熱流を求める.求められた温度差と熱流を用 いて、式11より熱抵抗を求める.

$$R = \frac{\Delta T}{q} \tag{11}$$

ここで, ΔT はサンプル上下面の温度差, q はサン プルを流れる熱流束である.

図5 テストセクション

図 6 に,接触熱抵抗を計測したサンプルを示す. 表面粗さの異なる 2 つの Al1010 同士の接触面(Ra = 0.2 μm と Ra = 3.2 μm を接触させた接触面)にお ける接触熱抵抗を計測した.

図6計測サンプル

図7に計測結果と,式7および式8から算出され

た接触熱抵抗を示す.図5に示す温度差を用いて式 11 より熱抵抗を求めると,サンプル自体の熱抵抗 と接触熱抵抗の合計値が求められることから,式 11 より得られた値から,サンプル自体の熱抵抗を 引くことによって,接触熱抵抗のみを算出している. 図から明らかなように,計測された接触熱抵抗は, 式7(グラフ中 Tachibana)と式8(グラフ中 Tachibana & Sanokawa)の間の値となっている.このことから, 電子機器接触圧力においても熱縮流の影響がある ことがわかるとともに,式8 では熱縮流の影響を過 大評価していることがわかる.しかしながら,式8 の結果と計測結果に大きな差はなく,式8 でも電子 機器接触圧力の範囲において,接触熱抵抗の値を予 測可能であるとも言える.

図7 計測結果と予測式の比較

4. 接触面における熱縮流の影響

接触熱抵抗の計測結果と式 7 および式 8 の結果 を比較することで,熱縮流の影響を考慮しない場合 は接触熱抵抗を小さく見積もることになり,式8の 形で熱縮流の影響を考慮した場合は,接触熱抵抗を 大きく見積もることになることがわかった.この結 果より,電子機器接触圧力の範囲でのさらなる予測 精度を求めるためには,式8における熱縮流の項を 見直す必要がある.そこで,図2に示す単位セルモ デルを解析ソフト上で再現し,熱伝導解析によって 熱縮流の影響の考察を行った.解析には,ソフトウ ェアクレイドル製 Stream V14 を利用した.

ユニットセルモデルにおいて,接触圧力の影響は, 式10より,接触圧力の変化に伴い真実接触部の割 合が変化することを利用して,真実接触部の面積を 変化させることによって表現した.また,実験と同 様に,ユニットセルモデルの上面に熱流束を与え, ユニットセル内部を上部から下部に熱が通過する 条件で接触熱抵抗を検証した.

作成したユニットセルモデルから得られた接触 熱抵抗と実験結果の比較を,図8に示す.この結果 から分かるように,ユニットセルモデルでの解析結 果は,実験結果と良い一致を示し,モデルの妥当性 が確認できる.

図9に、ユニットセルモデルにおける真実接触部 を流れる熱流の割合を示す.このグラフでは、ユニ ットセルモデル中を上部から下部に通過する全熱 流に対して,真実接触部を流れる熱流の割合を示し ている. グラフから明らかなように, 接触圧力が大 きくなるにつれて,真実接触部を流れる熱流の割合 が大きくなることがわかる.また、接触圧力が大き くなるにつれて,真実接触部を流れる熱流の割合が 飽和する傾向にあることが分かる.真実接触部に流 れる熱流の割合が大きいほど、縮流の影響が大きく なると考えられるため、縮流による熱抵抗は、接触 圧力が小さいほど小さく,接触圧力が大きくなるに つれて増大し、飽和する傾向になると考えられる. 式9を見ると、橘・佐野川の式では、接触面におけ る熱縮流は、材料の熱伝導率のみに依存する形にな っている.これは、橘・佐野川の式では、接触圧力 が大きい場合をターゲットとしているためであり, 図 9 で検証している接触圧力よりも大きな接触圧 力の範囲で,真実接触部を流れる熱流が飽和する傾 向になることから、合理的な式であると考えられる. 一方で,電子機器を対象とした接触圧力の範囲では, 図 9 に示すように熱縮流の影響が接触圧力に依存 する形になるため、式9で表現される熱縮流による 熱抵抗は,熱縮流の影響を過大評価してしまうと考 えられる. つまり, 電子機器における接触圧力の範

囲では,橘・佐野川の式をベースとして,熱縮流の 項を修正することにより,より正確な接触熱抵抗の 予測が可能となると考えられる.

5. おわりに

本稿では,電子機器の熱管理における接触熱抵抗 の問題点を紹介するとともに,従来提案されている 接触熱抵抗の予測式である橘・佐野川の式を紹介し, 電子機器における適用可能性を議論した.橘・佐野 川の式は、接触面の妥当なモデル化を行い、接触面 での熱抵抗を理論的に考慮して式を構築している ことから、非常に信頼性の高い式であると言える. つまり,橘・佐野川の式をベースとして,接触熱抵 抗の値を議論することに疑問の余地はない. このこ とは,電子機器の接触圧力の範囲における接触熱抵 抗の実測結果が,橘・佐野川の式と同じオーダーの 値を示すことからも裏付けられた. 電子機器の熱管 理に対して,橘・佐野川の式を適用する際の唯一の 問題点は,接触圧力が小さいことによる熱縮流の熱 抵抗の影響である.本稿では、数値解析を用いて、 熱縮流の影響を考察した結果の一例を紹介した. そ の結果,橘・佐野川の式が対象としている接触圧力 の範囲では,熱縮流による熱抵抗が材料の熱伝導率 のみに依存することが示唆された一方で,電子機器 の接触圧力の範囲では,熱縮流による熱抵抗が接触 圧力にも依存することが示された. このことから, 橘・佐野川の式の熱縮流の項を修正することにより, 橘・佐野川の式を用いて電子機器の熱管理における 接触熱抵抗を高い精度で予測可能なことが示唆さ れた.

参考文献

- [1] Holm, R., Electric Contacts, Springer (1999).
- [2] 日本機械学会, 伝熱工学資料 改訂第5版, 日 本機械学会(2009).
- [3] Tokuyama, T. et al., A Novel Direct Water and Double-Sided Cooled Power Module for HEV/EV Inverter, Proc. of ICEP2014, WA1-2 (2014).
- [4] 橘藤雄,接触面の熱抵抗に関する研究,日本機 械学会誌,102-107 (1952) 55-397.
- [5] 佐野川好母,金属接触面における伝熱に関する 研究:第4報,接触面の表面あらさの形状・う ねりの影響と接触熱抵抗の近似計算法,日本機 械学会論文集,1131-1137(1967)33-251.
- [6] Tomimura, T. et al., Simple evaluation method for temperature drop at contact interface between rough surfaces under low contact pressure conditions, IOP Conference Series: Materials Science and Engineering, 012040 (2014) 61.

非定常法による接触熱抵抗の測定と評価 Measurement and Evaluation of Thermal Contact Resistance by Unsteady-State Method

> 吉田 篤正,加賀田 翔 (大阪府立大学) Atsumasa YOSHIDA, Kakeru KAGATA (Osaka Prefecture University) e-mail: ayoshida@me.osakafu-u.ac.jp

1. はじめに

一般に固体材料は接触面の凸凹により接触面は 完全に密着せず,接触熱抵抗が生じる.接触熱抵 抗とは接触面の凸凹による実質的な接触面積の減 少や,隙間に熱伝導率の低い空気が介在すること により接触面で熱の流れが阻害される現象である.

これまで接触面の表面粗さや, 接触圧力が接触 熱抵抗に与える影響や、接触面間に金属箔やフィ ラーを挿入した場合の接触熱抵抗低減の効果に関 する研究([1] - [9])などが行なわれている. それら の研究から接触圧力が高いほど、接触面が滑らか であるほど接触熱抵抗は低いことや、薄く柔らか い接触材を接触面に挟むと、接触熱抵抗は低減さ れることなど、定性的な部分は明らかとなってい る. また表面粗さ, 接触圧力, 硬度などから接触 熱抵抗を推定する実験式も多く提案されている. しかし、接触熱抵抗は現象が数多くの因子に支配 される為、その時どきの接触状態に大きく左右さ れる.実際の接触状況を数値的に正確に把握する ことは容易ではなく、ある実験結果がそのまま他 の場合に適用できるとは限らない. したがって接 触熱抵抗を推定する実験式が実際の設計に使用で

これまで接触熱抵抗の測定には、伝熱実験で定 常状態における温度勾配を測定する定常法が多く 用いられてきた.しかし定常法による測定は試料 内の温度が一定になるまで長い時間を要する上, 温度を測定するために熱電対などのセンサを試料 に直接接触させる必要があり、例えばセンサを取 りつけられないような微小なサイズの試料に対し ての測定は困難である.近年、従来の定常法以外 の方法による接触熱抵抗の評価も試みられている ([10] - [13]).

本報では光音響法を用いた接触熱抵抗の測定に ついて検討を行なう.二つの金属を接触させた試 料に対して,接触圧力,接触面の表面粗さ,接触 面への接触材挿入の有無をパラメータとした測定 を行ない,光音響法による接触熱抵抗の評価を試 みた.また従来から用いられる定常法でも同様の 条件で測定を行い,光音響法による測定結果との 比較,評価を行なった.

2. 接触熱抵抗を考慮した測定理論

固体試料に関する光音響法の測定理論は RG 理論と呼ばれ, Rosencwaig and Gersho[14]により定 式化されている. RG 理論は, 図1に示す気体(g)・ 試料(s)・基盤(b)の三つの層から成るモデルを用い て, 各層における一次元熱伝導方程式を考えてい る.

既述の RG 理論では、試料と基盤との境界面で 温度は連続であるが、接触熱抵抗が存在する場合 は図 2 のように境界面において見かけ上、温度は 不連続となる.接触熱抵抗 R [m²K/W]は接触面に 生じる見かけの温度差/I[K]と接触面を通る熱流 束 q_c [W/m²]を用いて次のように定義される.

$$R = \frac{\Delta T}{q_c} \ [m^2 K/W] \tag{1}$$

ここで接触熱抵抗を考慮した光音響法測定モデル を考える.図1の2層モデルにおいて1層目と2

きることは多くない.

図2 接触面近傍の温度分布

層目の間に接触熱抵抗が存在する場合を考える. 両者の温度境界条件は接触熱抵抗の定義に従って 次のように表わされる.

$$T_s(-l_s,t) - T_b(-l_s,t) = Rk_b \frac{\partial T_b}{\partial x}(-l_s,t) \quad (2)$$

ここで, k は熱伝導率を表す. この関係を1 層目 と2 層目の間の境界条件として各層の熱伝導方程 式を解き,光音響信号を導くと,光音響信号の位 相遅れ¢ は接触熱抵抗 R を変数に含む関数とし て表わされる.

$$\varphi = (f:\xi,b,R) \tag{3}$$

$$\xi = \frac{l_s}{\sqrt{\alpha_s}} \qquad b = \frac{k_b \sqrt{\alpha_s}}{k_s \sqrt{\alpha_b}} \qquad (4)$$

ここで, αは熱拡散率を表す. *b*は試料と基盤の 熱浸透率の比を意味する.

3. 測定理論に基づいた計算

前章の接触熱抵抗を考慮した理論モデルに基づ いて変調周波数に対する光音響信号の位相遅れを 計算し,接触熱抵抗が位相遅れに与える影響を調 べた.一層目は厚さ 50 μm の Ti の薄板,二層目は Ti のバルク試料とし,接触熱抵抗 *R* を種々変化 させて位相遅れを計算した.計算に際して Ti の熱 物性値は文献[15]の値を用いた.

計算結果を図3に示す. 接触熱抵抗が小さいほ ど位相遅れのピーク値が小さくなることが分かる. 吸光係数をK,熱拡散長を μ とすると、光学的に 不透明で熱的に厚い試料($l_s \ge 1/K$, $l_s \ge \mu_s$)から得ら れる光音響信号の位相遅れは、熱物性値、変調周 波数に依存せず 45°一定となる. つまり同じ材質 の固体同士を接触させた試料において, 接触面に 接触熱抵抗が存在しなければ, それは熱的に厚い 単一の材料と同じであり, 位相遅れは 45°一定と なる. そして接触熱抵抗が存在する場合も接触熱 抵抗が小さいほど, その熱的性質は単一の材料に 近くなるため位相遅れは 45°に近づく.

4. 実験方法および試料

光音響法で接触熱抵抗の測定を試みると共に, その測定結果の検証,評価のため従来から接触熱 抵抗の評価に用いられる定常法でも同様の測定を 行なった.どちらの測定においても接触熱抵抗に 影響する要因である接触面の表面粗さ,接触圧力, 接触材の有無をパラメータとし,各要因が接触熱 抵抗に与える影響を調べた.いずれの測定におい ても試料として2つのTiを接触させたものを用い た.測定装置は文献[16]を参照して下さい.

下記2つの材料(A, B)を接触させたものを試 料とし光音響信号の位相遅れを測定した.

A.薄板(Ti, 直径 12 mm, 厚さ 0.050 mm)

B.バルク材(Ti, 直径 12 mm, 厚さ 13 mm)

接触面の表面粗さの影響を調べる為に三種類の 表面粗さを持つバルク材を準備した.接触する端 面をそれぞれ#120, #220, #1000の砥石で磨き, 表面粗さに差を持たせている.薄板と各バルク材 の表面粗さを表1に示す.表面粗さは輪郭形状測

	А	B-1	B-2	B-3
	(Plate)	(Bulk)	(Bulk)	(Bulk)
<i>Ra</i> [µm]	0.080	1.141	0.979	0.205
<i>Rt</i> [µm]	0.627	7.603	6.535	1.530
<i>Rmax</i> [µm]	0.811	13.053	8.196	1.995

表1 各試料の表面粗さ(光音響法測定試料)

定機(ミツトヨ製 CS-5000)で測定した. なお接 触状態の再現性を得る為に薄板は常に同じものを 使用した.

これら3種類の粗さの試料について,それぞれ 接触圧力を0.16~7.0 MPaの範囲で変化させて光 音響信号の測定を行なった.また接触熱抵抗を低 減させる効果のあるシート状の接触材(シリコン 材料)を接触面に挟んだ場合についても測定を行 ない,その効果を調べた.一回の測定に要する時 間はおよそ5分間である.なお測定に用いた Ti の耐力は一般的に200 MPa 程度であり,本測定に おける接触圧力による材料の変形は弾性領域内で ある.

定常法では, 試料には直径 40[mm], 長さ 45[mm] の Ti の円柱 2 つを接触させたものを用いた. 加熱 側の試料 (Sample2) の端面にシリコンラバーヒー ター(直径 40[mm])を密着させて加熱し, 冷却側 の試料 (Sample1)をサーモモジュール(ペルチェ 素子, 40[mm]×40[mm])で冷却し試料長手方向に 温度勾配を生じさせた. サーモモジュールには放 熱のためにアルミ製のヒートシンクを設置し, そ こへ冷却用ファンで風を送り冷却した. 試料の側 面は断熱のため発泡スチロールで覆った.

各試料には接触面から 8, 16, 24, 32, 40[mm] の位置に直径 0.6[mm] 深さ 10[mm]の温度測定用 の穴を設け,そこへ直径約 0.6[mm]の T 型熱電対 を挿入して温度を測定した.穴が熱伝導に与える 影響を小さくするために,各穴は円周方向に 60° ずつずらした位置に設けた.接触圧力は押し付け ねじ(M8)1本を締め付けることによって得られ, 押し付けねじと Sample2 との間に設置した小型ロ ードセルにより接触荷重を測定した.

10分間あたりの温度変動が0.1[K]以下となった 状態を定常状態としてその時の各測定点における 温度を測定した.1条件につきおよそ1時間の測 定時間を要した.表面粗さの異なる2種類の試料 を用いた.それぞれ粗さの異なる2種類の湿式サ ンドペーパー(#120,#2000)を使用して表面を磨 いた.表面粗さの測定結果を表2に示す.

表2 各試料の表面粗さ(定常法測定試料)

	Sample1	Sample2-a	Sample2-b
<i>Ra</i> [µm]	0.106	0.505	0.110
<i>Rt</i> [µm]	0.935	3.346	0.910
Rmax [µm]	1.264	4.558	1.151

1. 測定結果および考察

定常法による測定結果の例を図4に示す.実線 は測定値の一次式による最小二乗近似である.こ の実線より接触面における温度差⊿T [K]を求め, 実線の勾配と Ti の熱伝導率[15]とを用いて平均熱 流束 *q*_c[W/m²]を算出し,接触熱抵抗の定義式(1) に従って接触熱抵抗 *R* [m²K/W]を算出した.

各条件において求めた接触熱抵抗値を図5に示 す.各値は同条件にて2~3回の測定から得られた 値の平均値である.表面粗さの違いによる接触熱 抵抗の差を見ると,表面が滑らかな試料2-bの方 が,表面が粗い2-aに比べて接触熱抵抗が低いこ とが分かる.接触圧力の違いによる差を見ると, 表面が粗い試料2-aにおいて圧力が高い領域で圧 力の増加に伴って接触熱抵抗は低下する傾向が見 られる.一方,表面が滑らかな試料2-bは圧力に よる変化が見られない.これは試料2-bは表面が 滑らかであり接触面の凸凹が小さいため,接触圧 カが変化しても接触面積の変化が小さい為と考え られる.どちらの試料においても接触材を挿入し た場合,接触熱抵抗は低くなり,接触材による接 触熱抵抗の低減効果が確認された.

今回測定された接触熱抵抗は $10^4 \sim 10^3$ [m²K/W]の範囲であった. 接触熱抵抗に関する他 の研究報告を見ると試料に黄銅を用いた場合では あるが,接触面の中心線平均粗さが 1.0 [µm]程度 で接触圧力 0.1~1.0[MPa]の時,接触熱抵抗は $4\times 10^4 \sim 6\times 10^4$ [m²K/W]であるという実験結果が報 告されている[8]. 今回の測定で得られた値はそれ らと同じオーダーであり,今回の測定によって得 られた接触熱抵抗値は妥当な値であると言える.

図5 定常法による接触熱抵抗測定結果

光音響法による接触熱抵抗に関する測定結果を 図6に示す.粗さの異なる各試料について,それ ぞれ接触圧力を変化させて測定した光音響信号の 位相遅れである.いずれの試料においても接触圧 力が高いほど,位相遅れのピーク値が低くなる傾 向が見られる.

各測定結果から位相遅れのピーク値のみを抜粋 した結果を図7に示す.接触圧力が高いほど位相 遅れのピーク値が低い事が分かる.また表面粗さ については、表面が滑らかな試料ほど位相遅れの ピーク値が低い傾向が見られる.

接触面の表面が滑らかであるほど,また接触圧 力が高いほど,接触熱抵抗は低くなる.それら接 触熱抵抗の変化の傾向と光音響法により測定され

図6 接触圧力と位相遅れ(試料 B-1, B-2, B-3)

図7 位相遅れのピーク値の比較

た位相遅れのピーク値の変化の傾向は一致している.

もう少し詳しく各測定結果を見みると, B-3 の 試料の位相遅れは B-1, B-2 の場合に比べて特に小 さい. それぞれの試料の表面粗さ(表 1)を比べ ると, B-1の Ra 1.141 μm, B-2の Ra 0.979 μm と比べて B-3の試料の表面粗さは Ra 0.205 μmで あり他と比べて特に滑らかな面であることが分か る.したがって B-3の位相遅れが他の試料と比べ て特に小さいのは,表面が特に滑らかであるため 接触熱抵抗が小さいからであると言える.また B-3 の試料は他の二つの場合と比べて接触圧力を 変化させた際の位相遅れの変化が小さい.これも 表面が滑らかであるため接触面の凸凹が小さく, 接触圧力を増しても接触面積の変化が小さい為で あると考えられる.これは定常法による接触熱抵 抗の測定結果において見られた傾向と一致する.

接触面に接触材を挿入した場合の位相遅れの測 定結果を図8に示す.直接接触させた場合(図6) と比べると位相遅れのピーク値が低い.ここで用 いた接触材による接触熱抵抗の低減効果は定常法 による測定から確認されており,光音響法によっ て接触材による接触熱抵抗の低減効果が確認され たと言える.また接触材を挿入した場合,接触面 の粗さの違いによる位相遅れの差も見られない. 接触材を挿入した場合,粗さによる差が見られな い事も定常法による測定結果の傾向と同じである. 以上のように接触面粗さ,接触圧力,接触材の 影響による接触熱抵抗の変化に伴い,光音響信号 の位相遅れのピークも同様に変化する事が確認さ れた.これは3章で既述した理論値の傾向とも一 致する.以上の事から光音響信号の位相遅れの, 特にピーク値の大小を比較することで接触熱抵抗 の変化を捉えることが可能であると言える.

6. 接触熱抵抗の定量的評価

位相遅れの測定結果と,接触熱抵抗を考慮した 理論モデルによる理論曲線との比較から,接触熱 抵抗の定量的評価を試みた.図9にその一例を示 す.実線は理論曲線であり,接触熱抵抗 R を変化 させて計算を行なった結果である.測定結果と理

図9 位相遅れの測定値と理論値との比較

論曲線とは完全には一致しなかったが,位相遅れ のピーク値の比較により接触熱抵抗の変化を捉え られることから,測定結果と理論曲線とでピーク 値が一致する時の接触熱抵抗値を求めた.

その結果,例えば試料 B-3 (薄板 *Ra*0.080[µm], バルク *Ra*0.205[µm])の接触圧力 0.32 [MPa]の測定 結果から得られた接触熱抵抗値は 2.5×10⁻⁴ [m²K/W]となった(図 9).それに対して定常法の 測定結果の中で比較的同様の条件である試料 2-b (試料 1:*Ra*0.106 [µm],試料 2-b:*Ra*0.110[µm]), 接触圧力 0.32[MPa]の場合の接触熱抵抗は 3.6×10⁻⁴ [m²K/W]である.両者のオーダーは一致しており, 同様の条件下における測定結果から光音響法と定 常法とで同じオーダーの接触熱抵抗値が得られた.

ただし既述の通り,測定結果と理論曲線とは完 全には一致しない.本研究で用いた測定理論は熱 の流れが一元的であるという仮定に基づいている. 光音響法で一次元的な取り扱いが出来るのは,照 射光のビーム径に対して熱拡散長が小さい時であ る.本研究で扱った Ti の場合,変調周波数が 5[Hz] の時,熱拡散長は µ=0.77 [mm]である.レーザー 径 2[mm]に対して熱拡散長はそれよりも小さいが, 十分小さいとは言えず,また実際にはどの程度レ ーザー径に対して熱拡散長が小さければ1次元的 に熱の流れを取り扱えるかは不明である.今後, より正確な接触熱抵抗の定量的評価を行うために は3次元的な熱の流れを考慮した解析を行う必要 があると考えられ,それは今後の課題である.

7. まとめ

光音響法により接触熱抵抗の存在する2層材料 について位相遅れを測定し接触熱抵抗の評価方法 を提案し,実験的,理論的な検討を行なった.そ の結果,特に位相遅れのピーク値を比較すること によって接触熱抵抗の変化を捉えることが可能で あることが分かった.接触面の粗さ,接触圧力, 接触面への接触材挿入の有無による接触熱抵抗の 変化を光音響法で捉える事ができ,それらの傾向 は定常法による比較実験の結果と一致した.境界 条件に接触熱抵抗を考慮した光音響法測定理論を 用いて,測定結果から接触熱抵抗を算出した結果, 定常法で測定された値と同じオーダーの接触熱抵 抗値が得られた.測定値の精度の向上には3次元 的な熱の流れを考慮した解析が必要である.

参考文献

- [1] 芦分範行,大黒崇弘,川村圭三,頭士鎮夫, 発熱素子冷却用のマルチフィン形熱伝導体に 関する研究(第2報,発熱素子と熱伝導体間 の接触熱抵抗の予測方法),日本機械学会論文 集 B 編, 58-547, (1992), 871.
- [2] 芦分範行,発熱素子冷却用のマルチフィン形熱伝導体に関する研究(第3報,発熱素子と熱伝導体間の接触熱抵抗への非等方性表面粗さの影響についての理論的考察),日本機械学会論文集B編,58-554,(1992),3141.
- [3] Nishino, K., Yamashita, S. and Torii, K., *Thermal contact conductance under low applied load in a vacuum environment*, Experimental Thermal and Fluid Science, **10-2**, (1995), 258.
- [4] 大曽根靖夫, 久保貴, 中里典生, 固体接触面における接触熱コンダクタンスの金属薄膜による改善, 日本機械学会論文集 B 編, 71-710, (2005), 2500.
- [5] 佐野川好母,金属接触面における伝熱に関する研究第4報,接触面の表面あらさの形状・うねりの影響と接触熱抵抗の近似計算法,日本機械学会論文集,33-251,(1967),1097.
- [6] Sridhar, M. R. and Yovanovich, M. M., *Thermal contact conductance of tool steel and comparison with model*, International Journal of Heat and Mass Transfer, **39-4**, (1996), 831.
- [7] 鈴木敦, 佐々木要, 桑原平吉, アルミ電解コ

ンデンサにおけるエレメントとケース間の接触熱抵抗,日本機械学会論文集 B 編, 66-645, (2000),1503.

- [8] Tomimura, T., Experimental study of filler insertion effect on mean thermal contact conductance, JSME International Journal. Series B, Fluids and thermal engineering 47-3, (2004), 447.
- [9] 築添正, 久門輝正, 金属接触面の伝熱機構(第 1報, 第2報), 日本機械学会論文集, 37-299, (1971), 1361.
- [10] Cong, P. Z., Zhang, X. and Fujii, M., Estimation of thermal contact resistance using ultrasonic waves, International Journal of Thermophysics, 27-1, (2006), 171.
- [11]飯田嘉宏,近藤昌弘,金崎健,渡辺裕之,接 触熱抵抗の非定常任意加熱による測定法,日 本機械学会論文集 B 編, 63-610,(1997),2154.

- [12]高橋一郎, 富士原聡, 金属接触界面における 熱コンダクタンスの非定常特性, 日本機械学 会論文集 B 編, **65-639**, (1999), 3720.
- [13]Zhang, X., Cong, P. Z., Fujiwara,S. and Fujii, M., A new method for numerical simulation of thermal contact resistance in cylindrical coordinates, International Journal of Heat and Mass Transfer, 47, (2004), 1091.
- [14] Rosencwaig, A. and Gersho, A., Theory of the photoacoustic effect with solids, Journal of Applied Physsics. 47-1, (1976), 64.
- [15]日本熱物性学会編,熱物性ハンドブック,養 賢堂,(1990).
- [16]加賀田翔,山田哲也,吉田篤正,光音響法による固体接触面の熱抵抗の測定とその評価,日本機械学会論文集,81-823, Paper No.14-00435 (Total 13pages), (2015).

高熱流束環境下における TIM 及び接触圧力印加による接触熱抵抗低減効果の検証

Verification of the Reduction Effect of Contact Thermal Resistance with TIM and Contact Pressure in High Heat Flux

1. はじめに

電子機器の中には多くの半導体素子が搭載されて いる.これらの半導体素子には、ロジック半導体 やパワー半導体がある.特にパワー半導体は、大 きな電圧や電流を取り扱う半導体で、鉄道車両や 自動車、スマートフォンやノートパソコンの充電 器としても使用されている. これらの半導体素子 の素材は、従来はシリコン(Si)であったが、近 年は省エネルギー化に貢献するとされる「次世代 半導体」と呼ばれるシリコンカーバイド (SiC) や ガリウムナイトライド(GaN)が注目されており、 製品化が始まっている.半導体素子の素材が Si から SiC や GaN に置き換えられ、さらにはそれら の最大性能で使用されるようになると、素子には 大電圧・大電流が印加される. これら素子の駆動 時に起こる自己発熱により、非常に高い温度(場 合によっては 200 ℃ から 250 ℃) に到達すると予 測される. [1, 2] このような, 高温環境で使用さ れる半導体素子の周辺には、多くの素材から構成 される部品が存在し、それぞれの材料が異なった 熱膨張係数を有するため、温度上昇に伴い部品・ 材料の境界に亀裂が生じ,故障の原因と成り得る. そのため,耐熱性が高いとされる次世代半導体を 採用した電子機器であっても、温度上昇を最小限 に抑える冷却技術は重要である.冷却性能を向上 させるためには、冷却システム(例えば、熱交換 器、ヒートシンクなど)の性能の向上や、発熱を 起こす半導体から冷却システムまでの熱の移動経 路に存在する様々な部品や材料の接続部分に発生 する接触熱抵抗の低減が課題である. [3] 部品の 接続部を極めて平滑に仕上げることができれば, 接触熱抵抗を低減することは可能であるが、実際 は部品同士が接触している表面は「表面粗さ」と、 粗さよりも大きな周期の起伏をもつ「うねり」が 存在する. そのため, 見かけ上接触している面積 に対して,実際に部品同士が接触している真実接 木伏 理沙子(山口東京理科大学) Risako KIBUSHI (Sanyo-Onoda City University) kibushi@rs.socu.ac.jp

触面積は非常に小さく,見かけの接触面積に対し て 0.1%を下回るとされている. [4] そのため, 部 品同士を単純に接続した場合,真実接触部が主な 熱経路となり、それ以外の空隙部では高温側から 低温側に向けて空気を介して熱移動することにな る.このように単純に部品同士を接触させた場合, 図1に示すようにその面積のほとんどが熱伝導率 の低い空気を介しており、接触熱抵抗が大きくな る. 実際の製品では、空気よりも熱伝導性が高い 「熱伝導グリース」や、「熱伝導シート」などを挟 むことで抵抗が低減される. [3,5] これらの接触熱 抵抗を低減させるために部品間に挟み込む材料の ことを Thermal Interface Material (TIM)と呼ぶ.次 世代パワー半導体を搭載した電子機器の場合に適 用される TIM については、高い耐熱性が必要とな るため、従来品とは異なる TIM を適用する必要が ある. 例えば、耐熱性も高く熱伝導性が良い TIM として、銅ペーストや銀ペーストが挙げられる. これらの適用により、次世代半導体デバイスの到 達温度は最小限に抑えることが期待される.もの づくりの現場では、10 ℃の温度上昇が材料の劣化 スピードを2倍にするという経験値的法則の「10 ℃2倍則」が指標とされている. 電子機器の設計 では,駆動時の正確な温度上昇値を捉えなければ, 予想以上に短命な機器を生み出してしまうことも 大いにあり得る. そこで、半導体素子の温度上昇 を抑えるために使用される TIM であるが, その正 確な接触熱抵抗低減効果を明らかにしなければ, 省エネルギーかつ長寿命な機器を設計することは 難しい.

図1 固体同士の接触面

特に,次世代半導体では単位体積あたりの発熱 (発熱密度)がより高くなることが予測されており, 非常に高い熱流束環境で TIM が使用される.この 高熱流束,かつ高温下での使用に適した TIM の選 定や,高温・高熱流束での伝熱特性を正確に捉え なければ,次世代半導体の正確な熱設計は難しい. ここで,故障を避けたいがために過剰に安全な設 計を施そうとする場合,必要以上に性能の高い冷 却システムを搭載しなければならない.一方で, 省エネルギー化のためには冷却システムに費やす 電力を最小限に抑えなければならず,正確かつ安 全な熱設計手法が求められる.

これまでに,橘[6], 佐野川[7] らによって接触 圧力と接触熱抵抗の関係が示されているが,これ らは電子機器で使用される接触圧力よりも高い領 域で適用され,より低接触圧力下における接触熱 抵抗を評価する必要がある.そこで,本研究では 低接触圧力下において,従来使用されている TIM を含め,高温・高熱流束下での使用が期待される 銀ペーストを採用した場合の接触熱抵抗低減効果 を実験的に評価する.

2. 実験概要

2.1 実験装置と測定方法

図2に、熱抵抗測定装置を示す.本試験では、 定常法により熱抵抗を計測する. 図中の試験部は 無酸素銅製で、2つのパーツ(以降、銅ブロック と称する.)を付き合わせ、その接触面間に TIM を挟み込み、熱抵抗を測定する.本試験では高熱 流束試験を実現するため、 銅ブロックのヒータお よび冷媒用流路近傍は断面積の大きいピラミット 形状とし,試験部周辺は断面積の小さい円柱形状 にすることで熱流を縮流させる.以降,この円柱 部上面を伝熱面と呼ぶ.本試験の円形伝熱面の直 径はø10 mm とした. 上側の銅ブロックをカート リッジヒータにより加熱し、下側の銅ブロックを 水道水により冷却することで上から下への熱流を 発生させる. 伝熱面間を通過する熱流束を算出す るため,銅ブロック円柱部の温度勾配を取得する. 上下銅ブロック円柱部の中心軸上に 2.5 mm 間隔 で4箇所に熱電対を設置し,温度を測定する.耐 熱性の間題により加熱側銅ブロックに設置する熱 電対はK型クラス1とし、冷却側銅ブロックには T型クラス1の熱電対を設置する.カートリッジ

ヒータへの印加電圧を 5V 間隔で上昇させ通電加 熱し,各ボルトで定常状態の温度を測定する.

2.2 実験条件

本試験では、熱伝導率が非常に高い銀を素材と する銀ペーストを適応した場合の熱抵抗を計測す る.また、従来使用されている TIM としてサーマ ルグリース、熱伝導ゲル、はんだ、銅ペーストの 場合の熱抵抗を計測し、それぞれの TIM の伝熱特 性について評価を行う.また参考データとして TIM を塗布しない場合の熱抵抗の計測結果も示す. 本試験では伝熱面に接触圧力を与え、接触圧力に よる影響も評価する.接触圧力は 0.33 MPa, 1.71 MPa, 3.08 MPa とした.はんだおよび銀ペースト においては、試験を開始する前に加熱し、固化さ せる.ここで、全ての TIM の厚みは接触圧力によ って決定されるものとする.

熱抵抗測定手法	定常法
TIM	(なし) サーマルグリース 熱伝導ゲル 銅ペースト はんだ 銀ペースト
接触圧力 Pc	0.33 / 1.71 / 3.08 MPa
実験終了条件	TIM 耐熱温度 / ヒータ耐熱温度

表1 実験条件

2.3 評価方法

図 2 に示すように、加熱側および冷却側の各 4 点の温度を測定し、これらの温度を外挿することで高温側の伝熱面温度 T_H ($^{\circ}$ C)および低温側の伝熱面温度 T_L ($^{\circ}$ C)を算出する.これらの温度差を(1) 式に表すように伝熱面間温度差 ΔT ($^{\circ}$ C)とする.

$$\Delta T = T_H - T_L \tag{1}$$

また,計測した温度から加熱側の熱流束 *q_H* (W/cm²)および冷却側の熱流束 *q_L* (W/cm²)を(2)式 に示すフーリエの法則から求める.

$$q = -\lambda \frac{dT}{dx}$$

ここで, λは銅ブロックの熱伝導率(W/(m・K)), x は温度測定位置の距離 (m)を示している. TIM 部の熱抵抗 R (K/W)は, (3)式から求める.

(2)

(3)

$$R = \frac{\Delta T}{Q} = \frac{\Delta T}{q_{ave} \times A}$$

本試験において, 熱抵抗の評価で基準とする熱流 束は,加熱側および冷却側の熱流束を平均した *qave* (W/cm²)とする.断面積 A (cm²) は伝熱面の面 積である.

3. 実験概要

3.1 TIM なしとサーマルグリースの比較

図4に, 伝熱面の接触部に TIM を使用しない場 合と, 従来使用されているサーマルグリースを挟 み込んだ場合の熱抵抗を示す. [8] TIM なしの接触 圧力が 0.33 MPa の場合において, 非常に高い熱抵 抗を示した. 熱流束の上昇に伴い熱抵抗が減少す るが, これは空気の温度上昇に伴い熱伝導率が上 昇したことや, 銅ブロックの熱膨張により真実接 触面積が増加したことが原因であると考えられる. また, 接触面圧力の増加に伴い熱抵抗は減少する が、印加圧力と比例関係ではない. 1.71 MPa の場 合は,電子機器における接触圧力よりも高い圧力 ではあるが, TIM なしであっても熱伝導グリース (P_c=0.33 MPa) に近い熱抵抗を示している. 注視 すべきは, 接触圧力が 0.33 MPa の場合のサーマル グリースで, 熱流束が 250 W/cm²付近で熱抵抗が 上昇する傾向が確認されたことである。サーマル グリースは温度上昇に伴いちょう度が上昇するた め、TIM の厚みが変化することで徐々に熱抵抗が 低減する傾向が見られるが、250 W/cm² 付近で抵 抗値が急激に上昇している.これは、サーマルグ リースが蒸発したことでその体積が減少し、内部 に空隙が発生したために熱抵抗が上昇したと考え られる.本試験の真実接触面積の割合は,TIM を 使用せず接触圧力を 0.33 MPa とした場合の熱抵 抗値が高いことから、非常に少ないことが予想さ れる. そのため, 熱経路のほとんどがサーマルグ リースを介した熱伝導となり,熱流束の上昇に伴 いサーマルグリース内に空隙が生じ始めたことで 急激に熱抵抗が上昇することが考えられる.一方 の接触面圧力が高い場合は、低い場合と比較して 真実接触面積が多く、真実接触部を熱経路とする 箇所も多くなる. そのため、サーマルグリースの 蒸発に伴う空隙の発生も、熱抵抗値としては大き く現れないと考えられる.以上のことから、従来 品のサーマルグリースの場合は, 高温・高熱流束 で使用する場合に、蒸発により熱抵抗が急激に高 くなる可能性があり、長期間の使用が困難である と示唆される.

3.2 従来品の TIM における熱抵抗の比較

図5に,従来品のTIMである4種を採用した場合の熱流束と熱抵抗の関係を示す.[8]この中で, 最も熱抵抗が大きいのは熱伝導ゲルである.熱伝 導ゲルはサーマルグリースに対して熱伝導率が高 いものの,ちょう度は1/6以下と小さく,同じ接 触圧力を印加した場合のTIMの厚みは熱伝導ゲ ルが厚くなると予想され,その厚みにより大きな 熱抵抗を示した可能性がある.また,熱伝導ゲル は低熱流束から熱流束の上昇に伴う熱抵抗の上昇 が顕著である.耐熱温度の最も低い熱伝導ゲルは 低熱流束から蒸発を開始し,空隙が発生しやすい ことが考えられる.

次に熱抵抗の高い TIM は銅ペーストである.特 に接触圧力が低い条件下で,熱流束の上昇に伴う 熱抵抗の上昇が顕著であることがわかる.銅ペー ストは樹脂中に銅粒子が添加されているため,接 触圧力が大きい場合には伝熱面間距離が短くなり 粒子が連なることで伝熱面間を繋ぐ場合がある (図 6 (a)).この場合,樹脂が蒸発して空隙を発 生した場合も,パスが主な熱経路となり得るが, 圧力が低い場合には,粒子の連結により伝熱面間 を橋渡しする可能性は低く(図 6 (b)),熱流束の 上昇に伴う空隙の発生は熱抵抗の上昇の原因とな る.

図6 接触面間距離とパーコレーション

最も熱抵抗が低いはんだは、熱流束の上昇に伴って熱抵抗が若干上昇しているが、他の TIM に比べると極わずかな変化で、ほぼ一定の熱抵抗を保っている.この抵抗の上昇は、はんだの温度上昇による熱伝導率の低下が原因であると考えられる. はんだの熱抵抗測定試験は、はんだが耐熱温度を迎えたため試験を終了したが、450 W/cm²まで到達している.しかし、はんだの耐熱温度は、次世代半導体の駆動最大温度とされる 250 ℃と同等かそれ以下となるために耐熱性に課題が残る.

3.3 はんだと銀ペーストにおける熱抵抗の比較

図7に次世代半導体対応のTIM として期待され る高耐熱材料の銀ペーストの結果を示す. [9] 銀 ペーストは熱流束の上昇に伴い約 200 W/cm²まで は熱抵抗の上昇が見られ、約300 W/cm²を以上の 熱流束では熱抵抗が低減するという特徴的な結果 を示した.銀ペーストについては前述の通り、ペ ースト状態から固相にするため試験前に加熱して いるが、本実験装置の Ø 10 mm の円形伝熱面に挟 み込んだ状態で加熱を行なったため、硬化させる 工程において銀ペースト中の溶剤が完全に蒸発し なかったことが要因として考えられる.200 W/cm² までは溶剤が徐々に蒸発し、空隙が発生し始めた ため抵抗が上昇したと考えられる. 300 W/cm²を 超えると銀粒子が高温に到達したことで軟化をは じめ、粒子同士の接触面積が増大したことや焼結 を開始したことで抵抗が急激に低下したと予想さ れる. そのため, 高熱流束時にははんだと同等の 熱抵抗まで低減されたと考えられる.

図 7 TIM 熱流束と熱抵抗の関係 (はんだ・銀ペースト, 接触圧力 *P*_c=1.71 MPa)

3. まとめ

本研究では、低接触圧力かつ高熱流束環境下に おいて、従来品を含め次世代半導体対応として期 待されている TIM である銀ペーストを適用した 場合の接触熱抵抗の低減効果について評価した. この結果、最も高い熱抵抗低減効果を示したのは はんだであるが,耐熱性の問題から次世代半導体 への使用は難しい. 次に効果を示したのは銀ペー ストであり、完全に銀粒子を焼結させることが可 能であれば、はんだ以上の熱抵抗低減効果を示す 可能性はあり、次世代半導体の TIM として期待で きる. ただし本試験のように, 伝熱面が φ10 mm のように広い場合は銀ペーストに含まれる溶剤を 十分に蒸発させ、銀粒子を焼結させなければ数倍 もの熱抵抗を示す可能性がある.そのため、使用 する面積に応じて十分に溶剤を蒸発させるための 加熱を行わなければいけない.本稿で試験対象と した TIM において、低接触圧力・高熱流束におけ る接触熱抵抗低減効果を得るためには、高温時の TIMの蒸発による空隙発生が重要であると言える.

参考文献

- [1] 結城和久,次世代車載用 SiC パワー半導体の クーリング技術,エレクトロニクス実装学会 誌,18-2 (2015) 94.
- [2] 結城和久,高発熱密度パワーエレクトロニク スの沸騰浸漬冷却,エレクトロニクス実装学

会誌, 21-2 (2018) 122.

- [3] T. Tomimura, Experimental Study of Filler Insertion Effect on Mean Thermal Contact Conductance, JSME International Journal, Series B, 47-3 (2004) 447.
- [4] 鳥居薫,表面微細構造に支配される個体接触 伝熱-マクロとミクロの接点-,日本機械学会 誌,96-892 (1993) 198.
- [5] 富村寿夫,野村征爾,奥山正明,接触熱抵抗の低減に及ぼすグリース塗布効果(低平均接触圧力下での測定結果),日本機械学会2006年度年次大会公演論文集,(2006)197.
- [6] 橘藤雄, 接触面の熱抵抗に関する研究, 日本 機械学会誌, **55-397** (1952) 102.
- [7] 佐野川母好,金属接触面における伝熱に関する研究:第4報,接触面の表面あらさの形状・うねりの影響と接触熱抵抗の近似計算法,日本機械学会論文集,33-251 (1967) 1131.
- [8] 木伏理沙子,結城光平,結城和久,海野德幸, 高発熱機器の熱抵抗低減に関する研究,日本 機械学会 2017 年度年次大会公演論文集, (2017) J0330102.
- [9] 丹羽勇斗,木伏理沙子,結城和久,海野德幸, 高発熱密度環境における銀ペーストの接触熱 抵抗評価,日本機械学会 2019 年度年次大会公 演論文集,(2019) J01104P29.

電子機器における接触熱抵抗の低減技術 Technique for Reducing Thermal Contact Resistance of Electronic Control Unit

篠田 卓也 (株式会社デンソー),安井 龍太 (株式会社メイテック) Takuya SHINODA (DENSO CORPORATION), Ryuta YASUI (MEITEC CORPORATION) e-mail: takuya.shinoda.j3w@jp.denso.com

1. はじめに

コンピュータの熱設計は, CAE を利用した伝熱 解析がご多分に漏れず盛んである.このような仮想 技術の発展によって,実験検証によるトライ&エラ ーは非常に少なくなってきた.

10 数年前までは、電子部品が搭載されているプ リント基板上の熱解析は,主要な発熱部品を大雑把 にサラッと置き、大体の温度分布をチェックする程 度であった. 部品のモデルの多くは、3D の立方体 で熱伝導を等価にした一般的に言われる 1 ブロッ クモデルである.頑張って熱伝導率の異なる金属部 分と樹脂部分に分けた 2 ブロックモデルで解析す るくらいであった. それが, 電子部品における内部 構造の高詳細度モデルが登場してきた. 半導体 IC の一番温度が高いチップ温度(ジャンクション温度) を確度高く計算する時代になってきたのである.こ れはソフトウェアやパソコン能力の発達が大きい. そのため、現在は、数百の電子部品モデルを載せた プリント基板で、しかもそれを囲う筐体モデルも詳 細な 3D データでの計算である.ただし,簡単に実 験と解析の数値が一致するわけではない. 熱解析モ デルの精度は、入力値の精度と言い換えられるくら いである. だが、まぁいいかと、入力値は代表値を 利用するなど、あまり根拠を持たない数値を用いる エンジニアは少なくない.

実はもっとエンジニアを悩ますのが, 接触熱抵抗 である. 3D を作成してアセンブリするが, 理想通 りの寸法で書かれた 3D は当然のごとく, 接触面が ピタッと接触する. 放熱性能がすこぶるいい方向に なって, 設計の安全率が下がるのではと心配をして しまう. 熱の知識がないエンジニアでも,そこそこ 感づくのだ. 接触熱抵抗値はいくらなのだろうかと なんとなく, 知りたくなってくるエンジニアも出て くるわけだ.

2. 車載電子製品熱設計のミソ

2.1 電子機器の放熱課題

自動車にとって熱の問題は重要な課題の一つで ある.電子機器を配置するエンジンルームは 100 ℃以上になり,その中で電子制御装置 (Electronic Control Unit (以下 ECU))は高速な電子 制御による運転・走行性能の,緻密なコントロール を求められている.

ECU 等の電子機器の放熱手段として,代表的な 技術にプリント基板に実装された電子部品の発熱 を,筐体を介して ECU を支持するブラケットや自 動車ボディ,そして空気へと熱伝導で放熱する技術 がある.しかし,これらの部品を接続する箇所は, 金属同士が多く,ねじで締めても,少しばかり空気 を間に挟んでいる.このような熱抵抗を接触熱抵抗 という.

接触熱抵抗への熱対策の中核をなすのが, TIM 材 (Thermal Interface Material) と呼ばれるゲル等の放 熱材である.例えばプリント基板と筐体を接触させ ている部分に放熱材を挟むことで,僅かに生じる隙 間に存在する熱が伝わりにくい空気が,熱が伝わり やすい放熱材に置き換わり,熱抵抗が低くなる.放 熱材を利用すると,発熱量によるが半導体の温度は 10~30℃程度低くなる.特に局所的に発熱するよう な半導体の放熱設計をするとき,接触熱抵抗が大事 とわかる瞬間である.本当に助かる.

なら,気になるすべての接触部に塗布すればいい ではないかと思うかもしれない.当然,コストの採 算が合わなくなるのである.

信頼性の観点から見てみよう.一般的な品質保証 の温度上限は、プリント基板では130℃前後で、半 導体は150℃前後の限界が多い.パソコンやテレビ などの家電製品は、室内の約25℃環境で使用され るため、プリント基板で約100℃、半導体で約120℃ の温度余裕度がある.一方で、前述のように自動車 のエンジンルームは約100℃であるため余裕が少 ない. 製品寿命等の信頼性を損なわないために, な るべく温度上昇を低減する必要がある. ECU の放 熱形態として, 筐体からのふく射, 空気への対流熱 伝達, 部品間の熱伝導が挙げられる. 対流放熱は効 果的であるが, 対流を定量的に企業間の要求仕様に することは測定誤差が数十パーセントあるため, 採 用しにくい. ふく射による放熱ももちろん期待でき るが, 筐体の黒色化くらいしか手段がなく, 放熱性 の伸び代が少ない. そのため, 熱伝導による放熱技 術がミソとなる.

2.2 接触熱抵抗技術の現在

やはり、そうなると接触熱抵抗が気になる.少し でも接触状態を良くして放熱性を向上したい.その ため, 各部品の接触面にある接触熱抵抗について, 熱を妨げる要因を特定したい. 接触熱抵抗の計算式 は1950年代~1960年代にかけて橘・佐野川らによ り研究され、理論式および実験式が提案された.こ の式において,接触熱抵抗に影響を与える因子に金 属表面の粗さや接触圧力などが挙げられている[1]. 今日までの接触熱抵抗の代表的な計算式を両者で 確立したといえる.しかし、この論文には金属表面 のうねり(図1参照)が接触熱抵抗に与える影響は 大きいものの、うねりの様子を把握することは不可 能であると結論づけられており,うねりの影響は未 解明である[2]. また, 多くの研究で用いられる測定 系は、図 2 に示すような ASTM D5470[3]や大串ら の熱伝導率測定法[4]に代表されるような、円柱同 士の接触熱抵抗を評価するものであり,実際の電子 機器のように二つの平面をねじ締結する場合(図3 参照)とはうねりの発生原理が異なる. 平面同士を ねじ締結する際には、製造過程において発生するう ねり以外に, 締結により発生する応力で, 平板が弾 性変形・塑性変形したうねりが付加される. こちら のうねりのほうが支配的である. 電子機器の筐体に おいて,複数の箇所をねじ締結することが一般的で あり、2 点以上のねじ間で発生するうねりを考慮し た設計が必要である.

図2 円柱の接触熱抵抗測定(ASTM D5470)

(a)ねじ1本で固定する場合

(b)ねじ2本で固定する場合

図3 ねじ締結によるうねりの発生

2.3 代表的な橘・佐野川の式とその課題

接触熱抵抗値を算出するための代表的な式として,次式で与えられる橘・佐野川の式(1)を紹介する.

$$\begin{aligned} \alpha_c &= \frac{1}{\gamma_c} = \frac{1}{\frac{\delta_1 + 23 \times 10^{-6}}{\lambda_1} + \frac{\delta_2 + 23 \times 10^{-6}}{\lambda_2}} \cdot \frac{p_m}{H} \\ &+ \frac{\lambda_f}{\delta_1 + \delta_2} \left(1 - \frac{p_m}{H}\right) \end{aligned} \tag{1}$$

H:柔らかい方の固体のブリネル硬さ [kgf/mm²] p_m :平均接触圧力 [MPa] a_c :接触熱コンダクタンス [W/(m²·K)] γ_c :接触熱抵抗 [(m²·K)/W] λ_1, λ_2 :接触固体の熱伝導率 [W/(m·K)] λ_f :空気などの介在物質の熱伝導率 [W/(m·K)] δ_1, δ_2 :粗さの最大高さ [m]

式(1)は二つの金属の接触面の接触熱抵抗を計算 するものである.1章で示したように、図4(a)のよ うな筐体で伝熱シミュレーションを行う場合、筐体 とブラケット部間に接触熱抵抗が無い理想の接触 として設定することが多い.例えば、本来ならばス ポット溶接部以外は、接触熱抵抗が存在するべきで あるが、図4(b)のように二つの部品間に接触熱抵抗 が存在しないとして扱う.

図4 伝熱シミュレーションにおける課題例

式(1)を導入して接触熱抵抗を入力すれば,正し く伝熱シミュレーションができ,課題は解決するか というとそうではない.式の項には,うねりが加味 されていない.ねがわくば,部品を成型した後の部 品間の接触熱抵抗が算出できるもしくは,計測でき る技術が欲しい.

2.4 ネジ締めによる圧力分布の可視化

図5に示すECU筐体裏面の圧力分布を感圧紙で 可視化すると、図6の結果となった.圧力が印加さ れた部分は感圧紙が赤色になる.図6では赤色部は ねじ周辺に限定され,筐体全面が放熱に活用されて いないことがわかる.

図 5 エンジン ECU の外観

図6 感圧紙による圧力分布の可視化結果

この理由として,図3で示したように,ねじ締結 によって筐体が荷重と反対方向に反ってうねりが 発生し,実際は接触しないためと考えられる.

2.5 うねりが生じた応力の解析

では、うねりがどのように発生して接触しなくなるか、簡単なモデルで応力解析を実施した. 図7に示す幅 90 mm×奥行9 mm×高さ5 mmのアルミ板および同じ寸法を有する銅板を対象に ANSYS WB 17.1 を用いて応力解析を行った.

図8の応力解析の結果をみると,感圧紙を用いた 測定と同様に,荷重印加箇所近傍にのみ応力が

図8 接触面の応力分布

発生し、その他の領域の応力はほぼゼロである. 図9に示すように、印加荷重に応じてアルミ板が 荷重と反対方向に変形しており、接触していないこ とを裏付ける結果が得られた.

このように,実際の製品をねじ締結する際には, うねりによって局所的に接触面積が変化し,接触面 全体でみると接触熱抵抗に分布が生じる.

2.6 課題解決の意義

接触熱抵抗の低減手法に目を向けたい.電子機器 分野において,大串ら[5]や鈴木ら[6]の研究のよう に,接触面に熱伝導性が高く柔軟性をもつ材質を挟 むのが一般的である.これらの対策では,構成部材 が増えることになり,電子機器製造におけるコスト の増加が必然的に課題となる.この課題を解決する ため、ねじ締結によるうねりを利用して、筐体形状 に工夫をすることで接触熱抵抗を低減できないか 検証した.

また,接触面の熱抵抗を計測する新たな手法とし て,レーザ加熱を用いた方法[7]や,電気抵抗を利用 した方法[8],光音響を利用した方法[9]が提案され ているが,いずれの場合も,うねりの影響を排除し て測定をしている.うねりを有する接触面の熱抵抗 を測定する装置が存在しないことも課題となる.

うねりを意図的に利用した放熱性能の向上は,従 来の製品に対して部品を追加する必要がないため 低コストでの実現が可能ではないかと考える.理由 は,成形品であれば,金型の形状を工夫することで, うねりに似た表面を製作できる.余分なコストがか からないことがポイントである.

うねりを伴う広い面に分布する接触熱抵抗の局 所的な測定が可能となれば、構造物の内部で生じる 発熱量の放熱伝熱量を定量化できるようになる.

近年の自動車の課題の一つとして省エネがあり, 効率よくエネルギを使用し,放熱しなければならない.これにかかる放熱コストは,製品全体のコスト 割合でみると少なくない.また,うねりを伴う面の 接触熱抵抗低減は,伝熱工学の分野で解明されにく かった技術の一つであり,車載の電子機器に限らず, 機械の構造接触に伴う全ての工業製品に波及,適用 が可能な技術である.未確定な接触熱抵抗の存在を 定量的に明らかにしていくことで,さらに放熱性能 を上げる重要な技術である.

3. 接触熱抵抗分布の測定

3.1 装置の概要・特徴

製品の熱設計のためには、うねりによる接触熱抵 抗分布を把握しなければならない.そのため、測定 装置を開発し、うねりをもつ接触面の熱抵抗分布の 測定を実現することにした.

うねりが接触熱抵抗に及ぼす影響を評価するた めに,測定装置は図7の平板を測定可能なよう設計 した.板材がうねることで接触熱抵抗に分布ができ る.うねりによる接触熱抵抗の変化を明らかにする ため,全体の接触熱抵抗ではなく,局所的な熱抵抗 を測定したい.そこで,板材の長辺側を,図10の ように熱流束センサで通過伝熱量を10 mm 間隔で 9のエリアに分けて測定する.図11に示す本装置 では、M6 ねじを締めることで、筐体のボルト締結 のごとくアルミ板に荷重が印加され、荷重によるう ねりが発生する構造である.アルミ板と銅板の接触 熱抵抗を測定するためには、各板材の温度と通過伝 熱量の測定が必要である.詳細は、温度の測定につ いて、板材の中心部分に熱電対を挿入して測定し、 通過伝熱量は、銅板の下面に熱流束センサを配置し て測定した.熱流束センサは、接触面の通過熱量を 単位 W/m²で測定するセンサであり、この測定値に 面積を乗算することで各測定エリアの通過伝熱量 Q_{hi0}が算出できる.

今回, 熱電対挿入部からアルミ板の下面および銅板の上面までの熱抵抗は十分小さいとみなして無視した.これにより, 接触面上下の温度差 $\Delta T_{(i)}$ が求められる.

この装置は, 測定エリア *i*=1~9の局所接触熱抵 抗 *R*_{th(i)}は式(2)で計算し, 板材全体の並列接触熱抵 抗 *R*_{tot}は式(3)で評価できるようになっている.

$$R_{th(i)} = \frac{\Delta T_{(i)}}{Q_{th(i)}}$$
(2)

$$\frac{1}{Rtot} = \frac{1}{R_{th(1)}} + \frac{1}{R_{th(2)}} + \dots + \frac{1}{R_{th(9)}}$$
(3)

3.2 接触熱抵抗装置による分布測定結果

図 12 に, アルミ板と銅板との接触面が平面の場 合について, 荷重 2F を 0.1kN~4kN まで変化させ た場合の, 接触熱抵抗測定結果を示す.

これまでの検討結果を裏付けるように、中央部 の測定エリア5は接触熱抵抗が高く、荷重が印加 される両端部は接触熱抵抗が低い結果となった.

3.3 うねりを利用した接触熱抵抗の低減

ねじ締結によってうねりが発生し, 接触熱抵抗が 増加することがわかった.そこで, 接触熱抵抗を低 減するために, 図 13 のように, 図 10 のアルミ板を 下に凸の円弧形状としてうねりを与えることで, 接 触熱抵抗の低減を接触面積の拡がりで確認する.

うねり高さ $\Delta = 0 \ \mu m$ と $\Delta = 1000 \ \mu m$ のアルミ板 に、印加荷重 2*F*=1 kN を与えた場合の、感圧紙によ る接触状態の可視化結果を図 14 に示す. うねりを 形成した 1000μm の場合は, 印加荷重の増加に伴っ てアルミ板が弾性変形し, 頂点付近の接触熱抵抗が 下がり, 2.6 節で提案した低コストでの放熱性向上 に向け, 有益な結果が得られた.

図 14 うねり有無による接触状態の相違

4. おわりに

橘・佐野川の式では対応不可能な,板材を2点で 締結した際の接触熱抵抗分布に及ぼす印加荷重 2F およびそれに伴う変形の影響,うねりの大きさ Δ が接触熱抵抗に及ぼす影響があることを説明し た.今回,ねじのピッチや板材の材質・粗さ等は同 ーとしたが,今後,これらの因子が接触熱抵抗に及 ぼす影響を明らかにし,従来の橘・佐野川の式にう ねりの因子などを導入することで,有用な整理式を 得ることを目指す.

本稿にかかる測定は東工大伏信研究室との共同 研究で,同研究室学生のkarimkarjadi 君,ウ・ウォ ンソブ君と共に実施した.また,サーマルデザイン ラボ株式会社 国峯氏および元熊本大学 富村教授 にご教示いただいた.ここに謝意を示す次第である.

参考文献

- [1] 橘藤雄,接触面の熱抵抗に関する研究,日本機 械学会誌,55-397 (1952) 102.
- [2] 佐野川好母,金属接触面における伝熱に関する 研究(第4報,接触面の表面あらさの形状・うね りの影響と接触熱抵抗の近似計算法),日本機械 学会論文集(第2部), 33-251 (1967) 1134.
- [3] ASTM, Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials, D5470-17.
- [4] 大串哲朗,低接触圧領域における接触熱コンダ クタンスに及ぼす接触圧力と接触界面空隙厚さ の影響,第46回日本伝熱シンポジウム講演論文 集,(2009).
- [5] 大串哲朗,柳浦聡,渡邉聡,平田拓哉,導電性 接着剤の熱伝導率測定法の研究,熱物性,28-1 (2015) 22.
- [6] 鈴木敦, 佐々木要, 桑原平吉, アルミ電解コン デンサにおけるエレメントとケース間の接触熱 抵抗, 日本機械学会論文集(B 編), 66-645 (2000) 1503.
- [7] 大曽根靖夫、レーザ周期加熱及び反射率温度測定を用いたウェハ状固体試料間の接触熱コンダクタンスの光学的測定、日本機械学会論文集(B編),67-655 (2001) 767.
- [8] 吉瀬幸司,金属接触部における熱抵抗と電気抵抗の温度依存性,日本機械学会論文集(B編),79-798 (2013) 176.
- [9] 加賀田翔,山田哲也,吉田篤正,光音響法によ る固体接触面の熱抵抗の測定とその評価,日本 機械学会論文集,81-823 (2015)

圧力測定フィルムを利用した接触熱抵抗の評価方法

Evaluation method of contact thermal resistance using pressure measurement film

1. はじめに

近年, 電子機器の小型化や電子部品の高密度実 装化に伴って基板上の発熱密度が増加している. これにより電子部品や基板の温度が上昇しやすく なるため、電子機器には適切な熱設計が求められ る. 電子部品の温度は、その発熱量と放熱経路の 熱抵抗によって決まる。例えば、図1に示す密閉 筐体の機器では,発熱部品や基板が持つ熱抵抗と, それら部材間の接触熱抵抗などが温度に影響する. 特に接触熱抵抗については、接触面に放熱グリー スなどの Thermal Interface Material (TIM) を塗布 することで,通常その値の低減が図られるが,コ スト削減やグリースの経年劣化などの理由から放 熱グリースを使わない設計の要望も出てきている. このグリースレス接触における熱抵抗は、部材の 表面粗さやうねり, 接触圧力などの影響を受ける ため,その定量化は難しく,熱設計を行う際の課 題になっている.

本研究では、グリースレス接触面の熱抵抗を定 量化するために、圧力測定フィルムを利用した評 価手法の開発を試みた.具体的にはうねりが有る アルミナ基板とうねりが無いアルミニウム合金板 の接触を対象とし、本検討内容は材質や表面性状 が異なる材料の評価にも応用可能と考えている. 本稿では開発した手法と、得られた接触熱抵抗の 妥当性について報告する.

図1 密閉筐体の電子機器における放熱

青木 洋稔 (KOA 株式会社) Hirotoshi AOKI (KOA Corporation) e-mail: hi-aoki@koaglobal.com

2. うねりを有する部材の接触熱抵抗評価
 2.1 従来の予測式と適用時の課題

うねりが無い金属部材の接触熱抵抗の予測には, 式(1)に示す橘·佐野川の式[1]がよく用いられて いる.この式は,粗さを有する部材表面間の真実 接触部をモデル化した単位セルに基づく理論式に, 熱流の縮小と拡大の影響を導入したものであり, 平均接触熱抵抗 r_m と平均接触圧力 p_m の関係を表 している.ここで, h_m は平均接触熱コンダクタン スであり, r_m と逆数の関係にある.また, p_m は与 えられた荷重を接触面全体の投影面積Sで除した 値で定義される.式中には,部材の表面粗さ δ や 熱伝導率 λ ,ビッカース硬さ H_{min} ,接触面におけ る熱流の縮小と拡大による付加熱抵抗 $1/h_0$ など も含まれ, $1/h_0$ は一連の理論解析と実験結果に基 づく式(2)で与えられる.接触面全体の熱抵抗Rの予測には,式(3)が用いられる.

$$\frac{1}{r_{\rm m}} = h_{\rm m} = \frac{1}{\frac{\delta_1}{\lambda_1} + \frac{1}{h_0} + \frac{\delta_2}{\lambda_2}} \cdot \frac{p_{\rm m}}{H_{\rm min}}$$

$$+\frac{\lambda_{\rm f}}{\delta_1+\delta_2}\cdot\left(1-\frac{p_{\rm m}}{H_{\rm min}}\right) \qquad (1)$$

$$\frac{1}{h_0} = 23 \times 10^{-6} \cdot \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right) \tag{2}$$

$$R = \frac{r_{\rm m}}{S} = \frac{1}{h_{\rm m} \cdot S} \tag{3}$$

r _m	平均接触熱抵抗	$[m^2 \cdot K/W]$
S	接触面全体の投影面積	[m ²]
ギリシャ	文字	
δ	部材の表面粗さ	[m]
λ	熱伝導率	[W/(m·K)]
添字		
f	介在物質	
1, 2	部材 1,2	

しかし部品表面には、図2に例示するうねりが 存在する。この表面を他部材に接触させると、接 触面には図3のような非接触部と不均一な圧力分 布を持つ接触部ができる.したがって、部材表面 にうねりが無い均一接触を前提とした式(1)に, うねりが有る接触面の平均接触圧力 pm を代入す ると,式 (3) から予測される接触熱抵抗 R に大き な誤差が生じる課題があった.

この課題を解決するために本検討では、図2中 に示したように、大きなうねりが有る接触面をう ねりが十分小さいと見なせる微小領域(以降,微 小セルと記す) に分割し, 各微小セルの局所接触 圧力 pcell から局所接触熱抵抗 rcell の分布と接触面 全体の熱抵抗 R を算出する方法を考えた.以下, 2.2~2.4 節には、本開発手法を具体的に説明する.

2.2 圧力測定フィルムを利用した接触熱抵抗評価

うねりが有る部材の接触熱抵抗を評価する方法 を図4、及び、手順1-1~1-4に示す。

図 3 うねりを有する部材の不均一接触

手順1-1 図4(a) のように, 接触面における局所 接触圧力 pcell の分布を測定する.

手順 1-2 pcellを rcell に変換するため, 2.3 節の方法 を利用し、図4(b) に示す基準 p_{cell} - r_{cell} データを 取得する.データ取得には,評価対象部材と同じ 材質で同等の表面粗さを持ち、接触面のうねりが 無い試験片を用いる.また,接触面に介在する物 質も同じにする.

<u>手順 1-3</u> 基準 pcell - rcell データを用いて,手順 1-1 で求めた pcell を rcell に変換し, 図 4 (c) に示す微小 セルの r_{cell} で構成された接触熱抵抗分布を求める. 手順 1-4 各微小セルの rcell を式 (4) に代入して 合成し、接触面全体の接触熱抵抗 R を求める.

(a) 圧力測定フィルムによる接触圧力分布評価

2.3 基準 *p*_{cell} - *r*_{cell} データの取得方法

図 5 に示す過渡熱抵抗測定装置を用いて p_{cell} と r_{cell} の関係を取得する方法を説明する.本検討では, 共にうねりが無い純度 96%アルミナ基板(以降, Al₂O₃(96%)と記す)とアルミニウム合金板 A5052H34(以降, A5052H34と記す)を均一な圧 力でグリースレス接触させ,基準 p_{cell} - r_{cell} データ を取得した.過渡熱抵抗測定では,図 5 に示す内 部ヒーターから冷却プレートに至るまでの全熱抵 抗が図 7 の構造関数と呼ばれるグラフで出力され る.この結果に含まれる Al₂O₃(96%)と A5052H34 の接触面全体の熱抵抗 R_{air} を抽出して微小セルあ たりの r_{cell} に面積換算する. R_{air} と r_{cell} の具体的な 評価方法を手順 2-1~2-3 に記載する.

$R_{\rm g}$	うねりが無い Al ₂ O ₃ (96%)と	A5052H34
	を均一な圧力でグリース塗れ	「接触させ
	たときの接触熱抵抗	[K/W]
R_{A5052}	A5052H34 の熱抵抗	[K/W]
R_{Al2O3}	Al ₂ O ₃ (96%)の熱抵抗	[K/W]

<u>手順 2-1</u> 表1に示す組み合わせの試験片を用いて,図7の条件1と2の全熱抵抗を測定する.条件1は,均一な圧力でのAl₂O₃(96%)とA5052H34のグリースレス接触,条件2は,均一な圧力でのグリース塗布接触である.それぞれの全熱抵抗の差から*R*_{air}-*R*_gを求める.図8に測定例を示す.

<u>手順 2-2</u> 手順 2-1 と同じ試験片を用いて,図 9 の条件 3 と 4 の全熱抵抗を測定し,各条件の全熱 抵抗の差から $2R_g+R_{A5052}+R_{A1203}$ を求める.図 10 は、測定の一例である.ここで R_{A5052} と R_{A1203} は 試験片の寸法と熱伝導率から既知であるため、 R_g を特定できる.

<u>手順2-3</u> 手順2-1と2-2で求めた $R_{air} - R_g \ge R_g を$ 合計して R_{air} を算出し、その後、 R_{air} を微小セルあたりの局所接触熱抵抗 r_{cell} に面積換算する.

手順 2-1~2-3 は,装置の加圧機構によって $p_m を$ 一定に制御しながら実施する.試験片が均一接触 している状態では $p_m = p_{cell}$ と見なせるため, p_{cell} を調節しながら r_{cell} を取得できる.上記の手順を 圧力と試験片の組み合わせを変えて繰り返すこと で, $p_{cell} = 0.3 \sim 8.0$ MPa のときの r_{cell} を取得した.

過渡熱抵抗測定装置:測定部

0.01 内部ヒーター 0 0.3 0.6 0.9 1.2 1.5 1.8 熱抵抗 [K/W]

図6 過渡熱抵抗測定により求めた構造関数

表1 基準 pcell - rcell データの取得に使用した試験片

		試験片の組み合わせ					
		А		В		С	
平均接触圧力 pm[MPa]		0.3~	-1.0	1.0~3.4		4.0~8.0	
t	才質	Al ₂ O ₃ (96%)	A5052 H34	Al ₂ O ₃ (96%)	A5052 H34	Al ₂ O ₃ (96%)	A5052 H34
熱(λ[W	云導率 /(m·K)]	22.6	140	22.6	140	22.6	140
熱抵打 R _{Al2O}	熱抵抗 [K/W] R _{A1203} R _{A5052}		0.094	0.220	0.278	0.736	0.928
ビッカース 硬さ <i>H</i> v [MPa]			76		76		76
外形	直径 d	22	22	12.8	12.8	7	7
[mm]	厚み <i>t</i>	0.64	5	0.64	5	0.64	5
表面	粗さ Sa	0.66 \sim 0.69	0.86 \sim 0.95	0.46 \sim 0.66	0.78 ~ 1.01	0.46 \sim 0.61	0.80 \sim 0.91
形状 [µm]	うねり 高低差 <i>h</i>	2.5 ~ 2.7	1.6 ~ 2.4	1.0 ~ 1.9	1.8 ~ 2.8	0.9 \sim 1.8	1.5 \sim 2.2
試験片の組数		2		-	3		2

2.4 基準 *p*_{cell} - *r*_{cell} データの評価結果

2.3節の方法によって得られた局所接触圧力 *p*_{cell} と局所接触熱抵抗 *r*_{cell}の関係を,図11の実測値に示す.実測結果から式 (5)の近似式が得られた. この式を図4(b)の基準 *p*_{cell} - *r*_{cell}データとして利用する.

$$r_{\rm cel1} = \frac{1}{0.436 \cdot p_{\rm cell}^{2} + 0.194}$$
(5)

また図 11 には、橘・佐野川の式に基づく予測式 (3) を微小セルに適用した結果も示す.この予測値は、 式中の δ に試験片表面内の算術平均高さSaの1~ 4 倍の値、 p_m に微小セルの局所接触圧力 p_{cell} , Sに 微小セルの面積を代入して得た結果である. p_{cell} が 2MPa 以上では、従来の予測式 (3) に $\delta = Sa$ を 代入した予測値と実測値が概ね近い値を示し、 2MPa 以下では実測に比べて予測値が低くなった.

予測式中の1/h₀には式(2)に示す一定値を与えた が,過去の研究によると低圧領域ではh₀が急激に 増加すると考察されている[2].h₀の急激な変化に より,実測値と予測値が乖離したと推測される.

3. 開発手法の妥当性検証

3.1 検証方法

本開発手法により求めた接触熱抵抗の妥当性を 過渡熱抵抗測定の結果との比較により検証した. 接触熱抵抗の測定対象は、うねりが有る Al₂O₃ (96%) とうねりが無い A5052H34 のグリースレス 接触面とした.なお、本開発手法で利用する基準 $p_{cell} - r_{cell}$ データには、図 11 に示す実測結果に基づ く近似式 (5) から求めた値と、橘・佐野川の式に基 づく予測式 (3) を微小セルに適用し $\delta = Sa$ を代入 して求めた値の、2 通りを適用した.各手法から 得られた接触面全体の熱抵抗は、下記の記号 R_{wpm} , R_{wpn} , R_{wair} を用いて表す. $R_{wpm} \geq R_{wpn}$, R_{wair} の具 体的な評価条件を以下に述べる.

$R_{ m wpm}$	開発手法で評価した接触熱抵抗 [K/W]
	基準データ:図11 近似式(5)
$R_{\rm wpn}$	開発手法で評価した接触熱抵抗 [K/W]
	基準データ:図11 予測値·式(3)δ
=Sa	
$R_{ m wair}$	過渡熱抵抗測定で評価した接触熱抵抗
	[K/W]

Rwpm と Rwpn の評価条件

図 12 に示すように、うねりが有る Al₂O₃ (96%) とうねりが無い A5052H34 をグリースレス接触さ せたときの不均一接触圧力を圧力測定フィルムで 評価した. 過渡熱抵抗測定装置の加圧機構を利用 することで Al₂O₃ (96%) と A5052H34 の接触面全 体の平均接触圧力 p_m を 0.5, 0.75, 1.0, 2.5, 3.4MPa に制御し、各圧力条件での接触圧力分布を測定し た. その後、2.2 節の手順 1-1~1-4 に沿って微小 セルの p_{cell} , r_{cell} を求め、 R_{wpm} と R_{wpn} を得た. 検 証には、表 2 に示す試験片を使用した. なお、圧 力分布測定の際は、装置の内部ヒーターによる加 熱はせず、過渡熱抵抗測定も行わない.

Rwairの評価条件

 $R_{wpm} \geq R_{wpn}$ の評価と同じ試験片を使用し,過渡 熱抵抗測定によって R_{wair} を取得した. R_{wair} の測定 は、2.3 節と同様の手順により行った.このとき 2.3 節中の記号 R_{air} は、うねりが有る試験片を接触 させた場合の接触熱抵抗 R_{wair} に置き換えて考える. また平均接触圧力 p_m は、 $R_{wpm} \geq R_{wpn}$ の評価と同 じ条件とした.

図 12 不均一接触圧力の評価

衣 4 女ヨ注便証に使用 した戦闘	表 2	当性検証に使用した試験
-------------------	-----	-------------

		試験片の	組合せ
	平均接触圧力 pm [MPa]	0.5 0.75 1.0) 2.5 3.4
	材質	Al ₂ O ₃ (96%)	A5052H34
	熱伝導率 λ [W/(m·K)]	22.6	140
R	熱抵抗 _{A1203} R _{A5052} [K/W]	0.220	0.278
ビッカース硬さ <i>H</i> v [MPa]		- 76	
外形	直径 d	12.8	12.8
可按 [mm]	厚み t	0.64	5.0
表面	粗さ <i>Sa</i>	$0.33 \sim 0.63$	0.78
形衣 [µm]	うねり高低差 <i>h</i>	16.1 ~ 19.3	2.8
	試験片の組数	3	

3.2 評価結果

 $R_{wpm} \ge R_{wpn}$, R_{wair} の結果を図 13 に示す. 開発 手法により得られた R_{wpm} は、平均接触圧力 p_m が 0.5~3.4MPa の全ての範囲において、過渡熱抵抗 測定で評価した接触熱抵抗 R_{wair} と概ね値が一致し た. このことから R_{wpm} は妥当と考えられる.

次に $R_{wair} \ge R_{wpn}$ を比較すると, p_m が 2.5~ 3.4MPa の範囲では値が概ね一致したが、1MPa 以下の圧力範囲では結果が乖離した. 先述の通り、 R_{wpn} の基準データには、橘·佐野川の式に基づく予 測式(3)を微小セルに適用し $\delta = Sa$ を代入して得た 値を使用している. したがって、1MPa 以下の圧 力範囲における $R_{wair} \ge R_{wpn}$ の乖離は、図 11 の 2MPa 以下の圧力で r_{cell} の予測値と実測値が一致 していないことに起因していると推察される.

4. 結言

- (1) 圧力測定フィルムにより求めた接触圧力分布 を用い、うねりを有する部材の接触熱抵抗を 評価する新しい手法を開発した.本手法では、 部材同士の接触面をうねりが無視できる程度 の微小セルに分割し、この部分に微小セルの 局所接触圧力 pcell と局所接触熱抵抗 rcell の関 係を適用することにより、接触面全体の接触 熱抵抗 R を求めることを可能とした.
- (2) 本手法を、うねりを有する Al₂O₃ (96%) 材と

うねりが無い A5052H34 材とをグリースレス 接触させた場合の接触面全体の熱抵抗の評価 に適用した結果,過渡熱抵抗測定と同等の値 が得られ,本手法の妥当性を確認した.うね りを有する部材の接触熱抵抗の評価手法とし て有効な手段であるが, p_{cell} を r_{cell} に変換する ための基準 p_{cell} - r_{cell} データは,評価対象部材 の材質や表面粗さ,介在物質の条件に対応し た p_{cell} と r_{cell} の関係を使用する必要がある.

(3) 今後,接触面にできる圧痕などの観察から真 実接触面積や接点における伝熱現象を分析し, 実際の接触状態を考慮した熱抵抗の予測式の 構築を試みる.これにより,様々な材質や表 面粗さに応じた基準データを推定できるよう にしていく.

参考文献

- [1] 佐野川好母"金属接触面における伝熱に関す る研究(第4報,接触面の表面あらさの形状・ うねりの影響と接触熱抵抗の近似計算法)"日 本機械学会論文集(第2部)
- [2] 富村寿夫,小糸康志"接触熱抵抗の評価法に 関する検討(低圧下での粗さを有する平面間 の接触)"日本機械学会講演論文集 No.138-3
 [13-9-28, 鹿児島講演会]

感熱印刷プロセスに影響する接触熱抵抗の評価

Evaluation of Effects of Contact Thermal Resistance on Direct Thermal Printing Process

1. はじめに

1.1 感熱印刷の昨今の概況

様々なものづくりにおいて接触熱抵抗の問題が 散見され、製品の最終的な品質を左右することが 少なくない.熱的な不具合を避けるための温度管 理の観点でも、熱を使ったアプリケーションの質 向上に向けても、熱設計において接触熱抵抗の影 響を評価することは変わらず重要である.

接触熱抵抗が使用者の満足度に直接的に影響す るアプリケーションの事例として、感熱印刷 (Direct Thermal Printing: DTP) がある. 感熱印刷 は、サーマルヘッドと呼ばれる加熱体を用い、印 刷用紙(以下,用紙)に塗布された色素を熱で変 色させ、文字や画像を印刷するプリンタである. 昨今の動向[1]として、ポータブル PoS (Point of Sale)端末に実装されるレシート用プリンタや物 流管理用のバーコードプリンタの需要が、ネット 通販の拡大により急速に増加し,小型化できてイ ンクが不要というメリットから感熱印刷が使われ ている.また海外を中心に「その場プリント」が 可能なポータブル・フルカラープリンタが人気を 集め、ZINK[™][2]などの新しい感熱印刷技術が見 られる. 感熱印刷は身近な印刷技術として伝熱分 野での研究事例も多く、石塚[3]、望月ら[4]の伝熱 プロセスの研究, 江頭らの熱転写プロセスの研究 [5], 大原らの用紙が吸湿することによるカールの 評価[6]や,新田らの熱転写を応用した用紙の熱伝 導率評価法[7]など多数報告がある.

1.2 感熱印刷と伝熱

昨今のポータブル・フルカラープリンタの隆盛 も鑑み,印刷技術の新しい魅力品質の創成に向け, 感熱印刷のクオリティ向上のための基礎研究が求 められる.感熱印刷を端的にイメージ図と熱回路 網で表すと図1および図2のようになる.ドット ヒータ(微細な抵抗体)が多数実装されたサーマ ルヘッドと呼ばれる印刷機と,プラテンローラの 福江 高志(金沢工業大学) Takashi FUKUE (Kanazawa Institute of Technology) e-mail: fukue@neptune.kanazawa-it.ac.jp

図2 感熱印刷プロセスの熱回路網

間を, 色素を塗布した感熱紙が通過する. このと き, 印刷する文字や画像に応じ, 対応するドット ヒータを通電加熱させ, 感熱紙に熱を加える. 感 熱紙に塗布された色素が熱により変色し, その結 果, 用紙に文字や画像が印刷される, というのが 基本的な原理である. レシート用の感熱紙であれ ば, 加熱により黒色に変色するロイコ色素が塗布 されており、ドットヒータによる加熱で黒が印刷 される.レシートの印刷面を爪で擦ると黒く変色 するが、これは爪とレシートの間で発生する摩擦 熱により、ロイコ色素が変色するためである.昨 今のフルカラー感熱印刷で、例えば熱転写型のプ リンタでは、シアン・マゼンタ・イエローの三色 のインクリボンを順番に加熱し、印刷用紙に塗料 を転写することで印刷する.ZINKTM 技術では、 ドットヒータからの加熱履歴により、用紙に塗布 されたシアン・マゼンタ・イエロー各層の色素が 発色しフルカラー印刷を達成する.よって、ドッ トヒータから用紙に加熱される際の伝熱プロセス が、文字や画像の鮮明さや色の綺麗さに直結する.

1.3 感熱印刷における接触熱抵抗の評価

以上の背景から, 感熱印刷の魅力品質を獲得す るキーの1つが、サーマルヘッドと用紙の間で発 生する接触熱抵抗の影響である. 感熱印刷の厳密 な熱設計には、接触熱抵抗の定量的な評価を何か しらの形で織り込むことが肝要である. しかしな がら,最終製品そのもので発生する接触熱抵抗の 様相を、熱設計の過程で、定量的にかつ厳密に織 り込むことは難しい、しかし熱設計の出戻りの回 避[8]や,魅力品質の創成[9]を目指した構想設計段 階での熱設計の作り込みを考えた際に、

製品にお ける接触熱抵抗の影響を簡易に評価できる指標が あることは,最終製品の競争力向上に有益である. さらに、プリンタの設計においても、機能レベル で複合的な設計要素を一元的に設計するモデルベ ース開発 (Model-Based Development: MBD) の適 用事例が散見されている[10]中で、接触熱抵抗の 簡易的な機能モデルの構築にも繋げられる.

そこで本稿では、特に感熱印刷において発生す る接触熱抵抗の影響度を、構想設計段階において 機能レベルで評価・判断できる設計指標の獲得を 目指した2つの研究事例について紹介する.

2.サーマルヘッド実機における 熱回路網法を併用した接触熱抵抗の予測 2.1 課題の気づきのきっかけ

感熱印刷における接触熱抵抗の課題を考えるきっかけになったのは、感熱印刷の印字品質向上と 印刷時の消費電力低減のための加熱プロセスを考 えるうえで、サーマルヘッドで用紙を加熱した際 の温度応答特性が用紙の種類によって極端に異な

表 1	実験に供した印刷用紙の断面図

Type of paper	Thickness [mm]
Thermal paper (TH)	
a subscription of the second	0.05
Xerographic paper (XG)	
	0.065
High grade paper (HG)	
	0.1
Thermal transfer paper (TT)	
	0.2
Inkjet paper (IP)	
and the second	0.3

⁽b) 加熱開始後の印刷用紙の温度応答の違い (1.80 W の加熱をヘッド中央部から印加)

Time [s]

図3 サーマルヘッド上の印刷用紙の温度応答
る、という問題であった[11]. 一例として、サー マルヘッド上に載せた5種類の用紙(表1)をそ れぞれサーマルヘッド実機上に設置し、1.80Wの 熱をサーマルヘッド中央部の幅 3.75 mm に実装さ れたドットヒータから加えた場合に、裏面から放 射温度センサで温度履歴の違いを計測してみると, 図3のようになった. 用紙の種類による温度上昇 の違いが明確にみえた. 感熱印刷用の感熱紙が一 番高い温度上昇を示しており、紙の厚みが薄く柔 らかいこと,表面のロイコ色素により紙がサーマ ルヘッドに密着しやすい傾向があったことが原因 であると考えられる.そのほかの用紙については, もちろん紙が厚くなればなるほど、加熱面と温度 を測った裏面の間の熱抵抗は大きくなるため,裏 面の温度上昇は抑えられる傾向にある.しかし、 一方で単純に用紙の厚みだけでは温度上昇の度合 が決まらなかった.

2.2 熱回路網法による接触熱抵抗の推定

ここで着目したのが、紙の熱物性値と、サーマ ルヘッドと用紙の間の接触熱抵抗であった.

紙の熱物性値については、代表的な値について はデータベースに掲載されている[12]が、使用用 途やニーズに応えた様々な種類を網羅するには至 っていない.そこで、密度(精密天秤),比熱(示 差走査熱量測定)、熱伝導率(1次元定常熱伝導率 測定,後述)をそれぞれ直接計測した.結果、5 種類の用紙の間で最大2割程度のばらつきがあり、 加熱時の用紙の温度応答に影響を与えていること がわかった[13].

一方で,接触熱抵抗については,実験で直接的 に評価するのは難しい.そこで実験系を,計測し た紙の熱物性値も用いながら図4に示す熱回路網 に置き換え,非定常熱回路網法[14]による間接的

な予測を試みた.なお,(a)は用紙あり,(b)は用 紙なしのモデルである.

手順としては、用紙とサーマルヘッドの間の接 触熱抵抗を変化させながら熱回路網法による温度 予測を行う.予測結果と実験結果を比較すること で,接触熱抵抗の値を推定する.しかしここで問 題になったのは、複雑な構造を持つサーマルヘッ ド本体への熱漏れの度合が不明なことであり、こ の構造を直接的に熱回路網に再現することが不可 能であったことである. そこで、サーマルヘッド が壊れない範囲で、あえて用紙を載せずに熱を発 生させ,このときに放射温度センサで計測された サーマルヘッドの温度履歴が予測できるよう,サ ーマルヘッド側の熱伝導熱抵抗の推定をあらかじ め行った. 結果, 用紙無しの場合のサーマルヘッ ド表面温度の温度予測結果は図 5 (a) に示すよう に実験結果とほぼ一致し、サーマルヘッド側のモ デルの信頼性が確かめられたことから, 用紙あり の解析を進めた.得られた裏面温度の予測結果が 図 5 (b) である. 熱回路網法の解析は実験でみら れた用紙毎の温度応答の違いを予測できた. この とき得られた接触熱抵抗が図6に示すものであり、 用紙間の差異が極めて大きい. とりわけ感熱印刷 用の感熱紙は, 接触熱抵抗の値が低く, このこと からも、前述した密着性の高さが温度応答性に繋 がっているといえる.このとき、接触熱抵抗を全 ての用紙でゼロと仮定した場合の温度予測結果を 図7に示す. 用紙を問わず, 接触熱抵抗の有無で 温度応答特性に大きな差が出てしまうこと、すな わち、感熱印刷の熱設計における接触熱抵抗の重 要性が確認できた. 推定した接触熱抵抗が小さか った感熱紙が、むしろ最も大きい温度差を示した ことも興味深い.これは、厚い用紙は内部の熱伝 導熱抵抗も大きく,接触熱抵抗の影響が相対的に 小さくなるためと考える.

3. 接触熱抵抗と荷重の関係の評価

一方で、実際の感熱印刷機構では、印刷用紙は サーマルヘッドとプラテンローラに挟まれること から、直接の温度場や接触度の計測や評価は困難 が多い.よって、より普遍的な影響度の情報、例 えばプラテンローラからの印加荷重が、用紙の接 触熱抵抗に影響を与える閾値が事前に明らかにな っていれば、設計ノウハウとして利用できる.そ

図7 接触熱抵抗の有無で生じる裏面温度の差

こで、富村ら[15] が開発した、試料への印加荷重 が容易に変更できる天秤型一次元熱伝導率計測シ ステム(図 8)を用いて、用紙表面の接触熱抵抗 と印加荷重の関係を評価した[16]. ここでは5種 類の用紙をそれぞれ黄銅製のロッドで挟み、片側 のロッドを加熱、もう片側のロッドを冷却するこ とで用紙の厚み方向へ熱通過を発生させる. この とき現れるロッドの温度勾配から、用紙の表裏両 面の接触熱抵抗も含めた等価熱伝導率を求めた. この等価熱伝導率の変化から、印加荷重と接触熱 抵抗の関係を評価した.計測結果を図9に示す. 印加荷重が高いほど等価熱伝導率が高くなる、す なわち接触熱抵抗の影響が小さくなっていること がわかる.別の言い方をすれば、印加荷重が小さ い場合には、接触熱抵抗の影響により等価熱伝導 率が小さくなる傾向がみてとれる. この等価熱伝 導率の変化は、印加荷重に基づく接触圧力が 30 kPa を超えた場合には小さくなり, 60 kPa 以上で

図9 (等価)熱伝導率に対する荷重の影響

はほとんど飽和する.よって,これまで評価した 範囲では,用紙を押しつけるプラテンローラから の圧力が 60 kPa 以上確保できれば,接触熱抵抗の 影響は最小化できるといえる.実際の感熱印刷機 構では,この範囲より高い接触圧力を加えている ということであり,実設計におけるプラテンロー ラの設計値との整合性も確認することが出来た.

図 10 モバイルフォトプリンタの狩野モデルに 基づく品質設計マップ(2019年現在)

4. まとめ

製品内部において発生する接触熱抵抗が,製品の魅力に直結する事例として,感熱印刷における 用紙とサーマルヘッドの間の熱抵抗について取り 上げた.特に本研究では,設計の上流段階で適用 可能な,熱回路網法や MBD などの機能レベルの 熱設計へ展開するための接触熱抵抗の情報を取得 するための取り組みを,2 つの方向性から実施し た事例を紹介した.

製品の内部で発生する接触熱抵抗に関する問題 で難しいのは、接触する部材の表面の様相、材料 そのものの弾性など、接触面の状況に直結する要 素が千差万別で、かつ直接的には評価出来ない点 である.月山[17]が、熱転写プリンタをモデル化 した実験系で、サーマルヘッドと熱転写ベルトお よびゴムローラの間の接触の様子を高視野レーザ 顕微鏡で計測し、接触面の伝熱との関係を評価し た内容を報告している.製品における接触熱抵抗 の正確な把握に向け、実際の接触の様相と伝熱の 相関を密に評価する視点と、熱設計へ応用するた めの機能レベルでのモデル化の、両方の視点から の基礎研究の必要性を強く感じている.

最後に,現在の段階でモバイルフォトプリンタ に期待する(と筆者が予想する)狩野モデル[18] に基づく品質設計指標の一例を図10に示す.プリ ンタが「持ち運べ」「写真を撮ったその場で印刷 し」「コードレス」という,筆者が学生の頃は想像 もしなかったことが,今や「当たり前品質」にな ってしまった.次にヒットするアイディアが何か, 消費者の価値観が多様化した状況の中で想像する ことは難しい.だからこそ,どのようなニーズに 対しても対応できるような構想設計プロセスでの 作り込みが重要になり,感熱印刷において「印刷 する」という機能そのものを司る伝熱の本質を追 求することが必要不可欠である.このことを踏ま え,自身の今後の研究も推進していきたい.

謝辞

本研究の推進に際し,アルプスアルパイン(株) 寺尾博年氏,和宇慶知子氏,星野久氏,岩手大学 廣 瀬宏一先生,富山県立大学 石塚勝先生,熊本大学 富村寿夫先生,小糸康志先生のご指導,ご支援を 賜りました.記して謝意を表します.

参考文献

- [1] 寺尾博年、"サーマルプリンタ状況と昇華型フ オトプリンタ動向"、日本画像学会研究会 2019 年度第3回『モバイルフォトプリンタの 最新動向』(2019), 1-5.
- [2] 阿部栄文, "Zink プリンタ動向", 日本画像学会 研究会 2019 年度第3回『モバイルフォトプリ ンタの最新動向』(2019), 19-23.
- [3] Ishizuka, M., "APPLICATION OF A NETWORK METHOD TO THE THERMAL ANALYSIS OF HIGH SPEED THERMAL PRINTER HEADS", ASME Advances in Electronic Packaging (1992), 457-462.
- [4] Mochizuki, S., Kudoh, Y. and Tsukada, T., "The Effect of Heat Transfer Process on the Print Quality in Thermal Printers", *JSME International Journal*, Series II, 31-3 (1988), 553-558.
- [5] 江頭典孝,望月貞成,森本泰正,"フルカラー サーマルプリンタにおける染料転写機構の研 究", 日本機械学会論文集 B 編, 59-560 (1993), 1236-1243.
- [6] 大原俊一,羽山祐子,谷川洋文,鶴田隆治,"紙 種の差を考慮した定着過程のカール予測",熱 工学コンファレンス 2014 講演論文集 (2014), Paper No., B125.
- [7] 新田勇, 寺尾博年, 瀬下卓弥, "熱転写プリン タを利用した印刷用紙の簡易熱伝導率評価 法", 精密工学会誌, 70-4 (2004), 522-527.
- [8] 石塚勝, 図解入門 よくわかる電子機器の熱

設計 (2009), 秀和システム.

- [9] 大富浩一,よくわかるデライト設計入門 (2016),日刊工業新聞社.
- [10]中山高司,及川研,山科亮太,"プリンタ・複合 機のモデリングと制御",計測と制御,53-4 (2014),328-334.
- [11] Fukue, T., Terao, H., Hirose, K., Wauke, T., Hoshino, H., Ito, R. and Nakagawa, F., "Investigation of Transient Temperature Response of Papers in a Thermal Transfer Printer", *Proceedings of IS&T NIP29* (2013), 124-129.
- [12]日本熱物性学会編,新編熱物性ハンドブック (2008), 養賢堂.
- [13] Fukue, T., Terao, H., Hirose, K., Wauke, T. and Hoshino, H., "Analytical Investigation of Effects of Thermophysical Properties on Transient Temperature Response of Papers in Thermal Printer", *Proceedings of IS&T NIP30* (2014), 69-72.
- [14]高桒貞一,藤井則之,石塚勝,中川慎二,高木 寛二,"相変化現象を伴う電子機器の熱解析へ の熱回路網法の応用", Thermal Science & Engineering, 17-3 (2009), 105-112.
- [15] Tomimura, T., Nomura, S. and Okuyama, M., "Simple Measuring Method of Thermal Conductivity of Silicone Grease and Effect of Carbon Nanomaterials on Its Thermal Conductivity", Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference; HT 2007 (2007), Paper No., 32649.
- [16] Fukue, T., Terao, H., Hirose, K., Sasaki, Y., Wauke, T., Hoshino, H., Tomimura, T. and Koito, Y., "Basic Study on Evaluation Method of Thermal Conduction through Printing Papers using 1-Dimensional Thermal Conductivity Measurement", *Proceedings of IS&T NIP32* (2016), 112-115.
- [17]月山陽介,"フォトプリンタ基礎:「給紙ローラ と用紙の接触と摩擦」",日本画像学会研究会 2019 年度第3回『モバイルフォトプリンタの 最新動向』(2019),14-18.
- [18] 芝本秀徳, プロジェクトマネジャーのための プロセスデザイン入門 (2014), 日経 BP.

人と熱との関わりの足跡(その 6) - 阿波藍の発展と藍染めの伝統技術における熱との関わり-

Footprints of the relationship between humans and heat (Part 6) -Development of Awa Indigo and the Relationship between Traditional Indigo Dyeing and Heat-

河村 洋 (公立諏訪理科大 名誉教授,熱の科学技術史研究会 主査), 舩井 由美子 (三木文庫 学芸員),新居 修 (新居製藍所 藍師 現代の名工) Hiroshi KAWAMURA (Suwa Univ. of Science), Yumiko FUNAI (Miki Archives), Osamu NII (Nii Indigo Factory) e-mail: kawanif@nifty.com

1. はじめに

我が国の代表的な染色家かつ研究者の一人であ る吉岡常雄氏(故人)は、その著書[1]の冒頭部分に、 古代の彩色画としては、数万年前にフランスのラス コーやスペインのアルタミラの洞窟の壁画が描か れているのであるから、「そのような見事な色の形 を把握した人たちが、自然界の色鮮やかに見える植 物の花や葉を、身にまとっている衣類の色付けに使 わなかったはずはないであろう.」と述べている.

これらの古くから伝わる様々な天然染色の中で も、本稿では"藍染め"を取り上げている.これは、 2019年の日本伝熱シンポジウムが徳島で開催され た際に、阿波の代表的な伝統産業である藍染めの伝 統技術が「熱」と大きくかかわっていることに着目 して、「熱の科学技術史研究会」が主宰し、地元の 技能者の方々のご協力を得て「阿波藍の発展と藍染 めと熱との関わり」のご講演を頂いたことがきっか けとなったものである.

まず藍で染められた布地について世界的に見る と,現在までに発見されている世界で最も古い例は, ペルーの Huaca Prieta 遺跡から見つかった布片(図 1)である[2]. 右側が染色された布, 左がその復元図

図1 現在発見されている最古の藍染め(右). 約 6,200 年前, ペルーの Huaca Prieta 遺跡から 出土. 左はその復元図[2].

で、布には明らかに藍色が残っており、化学分析の 結果でも藍 (Indigo) であることが確認されている. 時代は、炭素同位体の年代測定から、約 6,200 年前 と推定されている.この発見までは、古代エジプト の約 4,400 年前の布地が最古とされていた[3].これ らから、地球上に拡散した人類がそれぞれの地域で 独自に藍染めの技術を発展させていたことがわか り、たいへん興味深い.また約 5,000 年前頃のイン ドのハラッパ遺跡からは藍染めの槽跡が発見され ており、インディゴ (Indigo) の語源もインドに由 来するといわれている[3].

地球上には,藍を含む植物は広く生育している. たとえば,インド等の東南アジア諸国ではマメ科の 印度藍,ヨーロッパではアブラナ科のウォード,我 が国の場合は本州や四国九州ではタデ科の蓼藍(た であい)(後出図),沖縄ではキツネノマゴ科の琉球 藍などである.これらの植物は分類学上は全く異な る"種"であるにもかかわらず,いずれも同一の物 質インディカン(Indican)を含んでおり,含藍植物 とよんでいる[4]. この Indican 自体は無色である が一定の化学反応を経て藍色を発色する Indigo に 変化する.すなわち,藍は,世界各地で全く異なる "種"の植物から一見異なる手法で染められている が,化学的には同一の反応を生起させる技術が独立 に開発されてきた点が興味深い[3,4].

2. 我が国における藍染めの発達

日本では正倉院や法隆寺御物の中に藍染めの布 が残っており、3~4世紀に藍草(蓼藍)が西方から 渡来した際に藍染の技法も一緒に伝わったものと 考えられている.図2は正倉院御物として伝わる藍 染めの「縹樓(はなだる)」である[5]. 縹(はなだ) とは、藍で染めた薄い青色のこと、縷(る)とは細 い糸の意味で、天平勝宝4年(753年)の大仏開眼 会で用いられた由緒ある品である.大仏に眼睛を点 じた筆に結び付け,参集者はこの長い紐を手にして 功徳に与ったもので,我が国に現存する藍染めの最 古の品であるとされている[4].

図 2 正倉院に伝わる縹樓(はなだる). 天平 勝宝4年(752年)の大仏開眼会で用いられた. 我が国に現存する藍染めの最古の品[5].

藍は平安時代までは主に宮廷や上流貴族が身に 着ける色とされていたが,鎌倉時代以降には武士が 藍の染料で染めた黒に近い濃い青色「搗色(かちい ろ)」を身に着ける習慣が定着した [6].

その後織田信長の時代頃から,庶民の衣服や寝具 の素材が麻から木綿に変わると,藍染めは庶民の生 活に根付いていったが,このとき木綿布を染めるの には,藍の建て染め(後述)が一番適した染色法で あった.

江戸時代の厳格な身分制度(士農工商)のもとで は、百姓や町人が日常的に着る生活衣服は木綿に限 定され華美な染色も禁止された.そのため藍で染め られた木綿は、江戸の町人の浴衣や職人の法被(は っぴ)から商店の暖簾などに用いられ、また農民・ 職人など数の多い身分層でも野良着・労働着・法被 などの多くは藍で染められていて、歌川(安藤)広 重が藍色の濃淡と墨で描いた風景(図 3)にも象徴

図 3 歌川広重の東海道五拾三次,三島.人物の衣服は藍色で,風呂敷も藍で染められている.国会図書館ディジタルコレクション[7]

されるように, 藍は庶民の生活を彩る重要なアクセントであった.

このように、江戸末期から明治初期にかけて日本 中に藍が溢れており、我が国に招聘された外国人教 師達も藍のあふれる街の光景に目を見張り、化学者 のアトキンソンは、この光景を「ジャパンブルー」 と呼んだと言われる[8].

その後,1883年にドイツの化学者バイヤーが Indigotinの分子配列構造を解明してその合成に成 功した.彼はその他の業績も含めて1905年のノー ベル化学賞を受賞している.その後さらにBASF社 が14年の歳月と多額の投資によってIndigoの工業 的な合成に成功して"Indigo pure"という商品名で発 売を開始し,その後は急速に合成藍が普及していっ た[3].とくに、アメリカ西部開拓に伴って考案され たと言われる機能的な「ブルージーンズ」は、若者 に好まれて世界中に広まった.吉岡幸雄[6]は、「藍 は、世界の人がみな愛した色であり」、「藍という色 が人間の眼にやさしい自然な色だと言うことが、 (中略)世界中で受け入れられた最大の要因といっ ていいだろう.」と述べている.

3. 阿波における藍産業の発展

藍草は古くから日本全国で栽培されていたが,豊 臣秀吉の家来であった蜂須賀家政が阿波徳島の城 主となると(1586年),温暖な気候と年ごとに洪水 を繰り返す吉野川によって上流から泥砂が流れ込 む自然の施肥と客土の恩恵を受けて,この地が藍の 栽培に適していることに着目し,藍栽培と関連事業 を保護・奨励した結果,質・量ともに優れた藍玉を 産出するようになった[4].

当初の1600年代は阿波藍の品質はまだ他藩に劣 るものであったが、1700年代には全国の藍市場を 支配するほどになった.その原因のひとつに、藍の 色の濃度や色相を客観的に調べる「手板法」と名付 けられた品質検査の方法がある.これは、和紙に藍 を塗り、透かしてその濃度を見たもので(図4左)、 このような客観的評価が適正な製造条件を導き出 し製造技術を向上させた[4].

阿波藍の品質を向上させたもう一つの要因に干 鰯(ほしか)と呼ばれる窒素肥料の導入・普及があ る.これらによって、収穫される藍葉中の藍成分の 濃度が向上し、阿波の藍を「本藍」、その他の地方 の産品を「地藍」と言われるようになった. さらに明和4年(1767年)から徳島で開かれた 「藍大市」も、阿波藍の発展に大きな寄与をした. 藍大市では、江戸・京都・徳島などから藍仲買人た ちが集まり、藍玉の品定めと取引を行い、その品質 を「手板法」により評価して「瑞一」「准一」「天上」 の三等級が付けられ賞牌板が贈られた(図4右)[4].

図 4 左:手板法による藍の鑑定[9] 右:藍大市の賑わい[10]

阿波藩主蜂須賀家による藍事業の保護・奨励策の 元に,商人として実際にこれを推進した代表的な事 業家が三木家である.三木家第一世となる別所規治 は,播州の三木城の城主で羽柴秀吉との戦いに敗れ た別所長治の従弟であるが,落城によって家来と共 に阿波に逃げ延び,天正8年(1580年)に現在の 徳島近郊の中喜来(なかきらい)に居を構え,帰農 して三木與吉郎と名乗った.中喜来は徳島から鳴門 へ行く途中にあり,三木家は今切川や吉野川の流域 水運の便を利用して,漁具,米穀,雑品などの幅広 い商いを始めたが,阿波藍が盛んになるにしたがい 延宝2年(1674年)に第二世高治が阿波藍の取扱い を始めた.その後,寛政元年(1789年)には,江戸日 本橋にも店舗を構え,以降,幕末・明治へと阿波を 代表する「関東売り藍商」となった[4].

このような来歴から,三木家は阿波藍にかかわる 史料・標本・絵画のみならず,江戸から国元(中喜 来)へ送られた錦絵・かわら版・書籍類などの幕末 の文化・世情を伝える史料や,阿波地方の行政や民 俗に関する史料など数多くを収集・所蔵してきた. これらについて,三木家第13代三木與吉郎眞治は, 昭和29年(1954年)に三木産業(株)創業280周年 記念事業の一つとして三木文庫を創設し,上記の諸 資料を多数収蔵して閲覧,学術調査などに提供して いる(図 5).このほか史料集や解説書も多く出版 しており([4], [9], [10]など),本稿でも多くを参 照している. 阿波藍の生産は、明治時代の後期ごろまで生産量 が拡大し、明治36年には最高の生産規模となった. しかし、明治中期からより安価で早く濃く染まるイ ンドからの沈殿藍(インド藍)や、後期にはヨーロ ッパより前述の合成染料が登場して、国内生産量は 激減し、「植物染料」はほとんど忘れ去られていっ た.

このように衰退の一途をたどっていた藍栽培で あったが、大戦中にも密かに蓼藍の栽培が続けられ、 また後に述べる「蒅(すくも)」の製造技術も保存 されたことから、昭和 50 年頃から郷土の伝統ある 産業として見直されるようになった.また、伝統工 芸品や手作り作品の人気の高まりなどもあって、天 然藍による藍染め作品が注目されるようになって、 藍栽培の面積も徐々に回復してきている.

図5 三木文庫所蔵資料の例©三木文庫 左:藍染めの装飾品,中上:賞牌板(瑞一), 右上:藍染めの法被(三木商店屋号入), 中下:藍粉成し道具(後出),右下:藍玉の俵

4. 藍染めの伝統技術とその化学

4.1 藍染めの化学

Cardon[3]は天然染料による染色の方法を次の 3 種類に分類している.

- (1)直接法(Direct dyeing):植物染料と繊維などの染 色対象の分子構造に親和性のある場合で,植物を 浸すかあるいは煮込んだ水溶液に繊維などを浸 すことによって染色する.
- (2) 媒染法(Mordant dyeing): 植物染料と染色対象との間に直接の親和性がないときでも,明礬(みょうばん)や錫塩,鉄塩などの媒染剤(金属塩)によって発色させ,様々に変化する色を染め出す方法. 天然染料による染色は,この方法が種類も多くむしろ一般的である[8].
- (3)建て染め法(Vat dyeing):水に溶けないが還元す ると水溶性になる染料で,一旦還元した状態を作

ってここに繊維等を浸した後,空気中に引き上げ ることにより酸化させて発色かつ定着させる染 色法. 還元状態になると染料を含む泡が表面に立 ちあがってくるため"藍が建つ"という. 還元法 ともいう. このとき一般に大きな甕 (Vat) を用い るので英語では Vat dyeing といっている. この方 法の代表的な例がこの藍染めと、ある種の貝を使 って紫色を染める「貝紫」である[8].

なお、藍染めの場合も(1)直接法でも染めること が出来て「生葉(なまば)染め」と呼ばれるが、藍 葉の収穫後直ちに作業をする必要があるために時 期と場所が限られる. 藍染めが世界規模で普及した のは、後に述べる「蒅(すくも)」あるいは「藍澱(ら んでん)|等を一旦作って運搬・保存しそれを用い て任意の時と場所で染める「(3)建て染め法」が開 発されたことに依る[4].

藍染めの基本となる工程の大きな流れを説明す るにあたり,まず藍染めにかかわる化学物質につい て説明させて頂きたい. それぞれの化学構造式は図 6に記載している.

- (1)インディゴ(Indigo):繊維等に定着することによっ て青系統色に染める染料.発色させる主要な化学 成分は Indigotin と呼ばれ,2個の Indoxyl が点対 称に結合した構造である[3].水に溶けないため, 染色には一旦(2)のロイコ体を介する必要がある.
- (2)ロイコ体インディゴ(Leuco-Indigo): Indigo を還元す ることによって得られる. 無~薄い黄色になるが 水に溶けるのでこの状態で繊維等に付着させ,後 に空気中で酸化させることにより Indigotin に戻

(1)Indigotin (青色) (2)Leuco-Indigo (無~黄色)

(3)Indoxyl

図 6 Indigo 関連分子の構造式[3]

して藍色に発色させかつ定着させる.

- (3)インドキシル(Indoxyl): Indigotin の構成要素. 含藍 植物の中には次の Indican の形で存在する.
- (4)インディカン(Indican): Indigo が含藍植物の中で自 然界に広く存在する形.グルコース(一種の糖分) と結合した形であるが、この状態では無色で、葉 の組織中に分離して存在する酵素が作用すると 結合が離れて Indoxyl を生成する[3].

図7は、含藍植物のうち我が国で一般的な蓼藍 (タデアイ)である.正常な葉は鮮明な緑色であるが, 痛んだ葉(中央付近)は通常の枯れ葉のような茶色 ではなく、特徴的な黒ずんだ青色になっているのが わかる.これは、葉の組織が破壊されたために、含 まれている酵素が作用して Indican から Indigotin が 生成されためである. なお, 藍染め染料の製造のた めには開花前に葉を採集するが,ここでは観察のた めに開花させている.

図7 蓼藍 (タデアイ). 通常のタデによく似た 花が咲く. 傷ついた葉の部分は濃紺色を呈して いるのが特徴的.

4.2 藍の栽培・収穫・乾燥

現在阿波地方で行われている藍染めの工程を, 簡 単化して図8に示す.本項については、新居(筆者 の一人)の新居製藍所のウエブサイト[11]にわかり やすい動画による解説がある.

①藍葉の栽培と収穫:3月上旬にまず苗床に種をま き苗を育て、4月下旬から5月上旬に施肥した本畑 に移植する.本畑では,灌水,施肥,害虫駆除など の作業をし7月から8月に藍葉を刈り取る.

②藍粉成し:収穫した藍葉は裁断機で細かく裁断し た後,風によって葉と茎を分ける.これを「藍粉成 し(あいこなし)」という.その後は天日で乾燥す る(図82). 乾燥した葉を「葉藍(はあい)」と呼ん でいる. この段階で Indigotin の生成が始まってお り葉藍は図 7 の痛んだ葉のような濃紺色を呈する.

4.3 葉の醗酵・蒅(すくも)の製造

③寝せ込み,切り返し: 葉藍を醗酵させることによ り,内部にインディゴ(厳密にはインディゴティン) を生成させる.そのために,乾燥した葉藍を10月 頃から"寝床"と呼ばれる大きな倉庫のような建物 内で醗酵させる.図9は,寝床の写真と断面図であ る.蒅の醗酵過程に於いて重要なことは,水分,空 気供給,温度の適切な管理である.そのため,寝床 の床は水分の通過をよくするために,下から砂利, 砂,モミガラ,粘土の積層にし,かつ側壁には空気 の取り入れ口を設けている.

作業にあたっては、藍葉をいくつかの台形の山 (床(とこ)と呼ばれる)に分けて積み上げ、この "床"に水をかける(図10左上)と醗酵が始まりこれ に伴い内部の温度が上昇する.葉藍の温度や酸素の 供給を均一にするために、図10(右下)のように、 葉藍を攪拌しながら"床"を1~2mずつ移動・往 復させる.この作業を切り返しと言い、各"床"に 対して、週に一回ずつ行う.

切り返し作業時以外は床に"ふとん"と呼ばれる 筵(むしろ)をかけて保温し(図11), 醗酵の状態を 見ながら床の上にかける筵の枚数や水打ちの量な どを調節する.中心付近の温度は 60~70℃に達す

図8 阿波地方における藍染めの伝統技術 (写真は新居製藍所及び松茂町歴史民俗資料館提供)

図 9 寝床(作業場)とその断面図.換 気窓と積層の床に特徴がある(石井町武 知家)[10].

図 10 左上:水打ち(筆者の一人新居), 右下:切り返し,中央:切り返し時の表面 の葉の温度(約 30℃~50℃).(新居製藍所)

るが,これ以上に上げないこと が重要である.

この作業を 2 月頃まで約 20 回行うと, 醗酵が収まってきて 葉が崩れた堆肥のような状態に なる(図 8④). この状態を「蒅 (すくも)」と呼んでいる. "蒅" という文字は, 草で染めるとい う意味の和製漢字である. 蒅中 には Indoxyl が生成しており, 残存する葉の組織や茎も同時に 含まれているため, Indoxyl の濃 度は、3~8%であると言われて いる. 蒅中には有機物や微生物 を多く含むため、次の作業の藍 建てには有利である[3]. この状 態で、それぞれの

藍師の

屋号を 記した俵に詰めて保存し、出荷 する.

図 11 左上: 藍葉の床(とこ).内部温度が均 ーになるように中央部を低くしている.右下: "ふとん"をかけて保温した状態

なお, 藍を保存する方法について世界的に見ると, 本報で取り上げた「蒅法」は,日本など東アジアの 中緯度地帯で行われているほか,ヨーロッパのウォ ードでも類似の方法が見られる[3].

この他には,インドや中国南部など気温の高い地 域で行われる「沈殿法」がある[1,3,4,6]. この方法 は,大きな水槽(多くは屋外に設置)に含藍植物を 浸し,石灰などを入れ加熱することはなく攪拌して, 溶け出して生成した色素(Indigotin)が水に不溶性 であるために沈殿するのを取り出すもので,そのま ま「泥藍」として利用する場合や,乾燥させて「藍 澱(らんでん)」とする場合がある.(本報では阿波 藍を主題としているので詳述はしない.)

4.4 藍を建てる

すでに述べたとおり,染色成分である Indigotin は 水に溶けないため,これを還元して水溶性のロイコ 体にする.この還元過程と次の染色過程は,図8の ⑤と⑥や次の図12に見られるような大きな陶器製 の甕を使って,液を移し替えることなく連続して行 われる.この還元過程でもやはり細菌による醗酵を

図 12 藍染めの温度管理の変遷. 左:(室町時 代)甕は大気中に設置. 中央:(元禄年間)土 中に埋めて保温. 右:(文政年間)火壺と呼ば れる加熱装置(矢印)が加えられている[10].

利用している. 還元が進むと無色から黄色のロイコ 体インディゴが生成される. このとき液面付近では 酸化されるために発色して濃い青から紫色の泡が 建ちあがる (図 8⑤)ので,これを「藍の華(はな)」 と呼んでいる.

この手法は,経験的に取得されてきたものである が,ここで作用する還元菌は,1960年代の高原・田 辺による一連の研究[12]の結果見出されている.こ の細菌は,強いアルカリ性 (pH=10~11.5)を好み, 夏期の常温に近い温度領域 (20~30℃)で最も活発 となる[12].最近では DNA 解析が出来るようにな ったこともあり,類似の還元菌を発見したとの複数 の報告もある[13,14].この温度範囲は春から夏に かけては適温であるが,冬期には気温が低くなって 過ぎるため,古くは藍染めは夏前後にのみ行われて いた[10].

図12に、藍染めにおける温度管理の発達を示す. 室町時代の絵(左)では、甕は大気中に置かれてい るが、江戸時代には、土中に埋めて保温している (中).さらに江戸時代後期(右)になると、火壺と 呼ばれる加熱装置が設けられるようになり、年間を 通しての染色作業が可能となった.火壺は、甕4個 に一つ設けられ、おが屑などをいぶして温度を保持 した[10].下からの空気の取り入れ口はなく、火力 は火壺の蓋の開度で調節している.

19 世紀初期ヨーロッパのウォードによる藍染め 工場に於いては,巨大な藍甕(約60000)を用いて, 大きな熱源を上から出し入れすることによって温 度を調節していたこともあることが,[3]に絵入り で紹介されている.

藍建てにはいろいろな手法があるが[1],ここでは著者の一人(舩井)が松茂町歴史民俗資料館で実施している手法をもとに簡潔に紹介する.図13(左)は、ほぐした蒅を藍甕(容積 2700)にいれ、そこに温

図 13 左:蒅をいれた藍甕に加熱した灰汁(あ く)を投入しつつ攪拌.右:攪拌中の温度分布. 表面は約 50℃,左側に火壺があるため甕の左 側の温度が高い.(両者の撮影時点は異なる.)

度約 75℃, pH 約 12 の灰汁を注ぎ入れながら攪拌 している模様である.同(右)は,約 10~15 分経過後 の藍甕内の温度分布である.液面の表面温度は約 50℃で,左側に火壺(電気ヒーター)があるため, 壁温が上昇している.

その後, 灰汁を加えて容積を増やし攪拌も続ける と,3日目頃に液面にポツポツと紫金色の斑点が現 れるので,中石と呼ばれる消石灰を加えて pH を調 節する.還元が進むと CO₂ や水素ガスが発生する ために pH が下がってくるためである.さらに還元 菌の"栄養(賦活化)"のために,フスマ(糊化し た小麦の表皮)や清酒を加える.pH が下がるたび にこれらを数回繰り返すと,5~7日目頃には表面 に緑の濃い泡ができて青色に変わり, 醗酵が頂点に 達した感があるので,さらに石灰(止石と呼ばれる) を入れる.この頃には図 8⑤のように「藍の華」が 浮かぶ.その後は pH=10.5~11.0 の範囲を保持する よう灰汁,石灰等で調整しながら維持する.

図 14 は、栃木県益子町の染織工房日下田(ひげた) 紺屋[15]に並ぶ藍染め甕である.現在も日下田 正氏が、伝統的な手法で綿の栽培、木綿の糸づくり、 藍の糸染めや手織りを継承しておられる.藍甕には 藍の華が美しく建っており、使用しておられる蒅は やはり徳島産の阿波藍であるとのことであった.た しかに甕4個に一つずつ火釜の蓋が見え、現在もお が屑を燃やしておられる.陶器の町益子らしく、蓋 が陶器製であるのも印象深い.

図 14 現在も操業する栃木県益子町の染織工 房日下田紺屋. 藍甕には藍華が建っており, 藍甕4個当たりに一つの火釜の蓋が見える.

4.5 藍を染める

こうして還元された染色液が準備できると,同じ 藍甕を使って染色する.染めたいもの(布や糸)を 準備し,まず水にくぐらせて湿潤し,その後脱水す る.次に布や糸を染料液中に入れ,全体に均一に染 料液をいきわたらせ、その後ゆっくり染料液から出 すと、空気に触れることにより酸化して青色に発色 する.図15は、松茂町歴史民俗資料館で行ってい る子ども達への藍染め体験からの画像である.

このような浸染および空気酸化を一工程とし、こ の行程を繰り返すことによって次第に濃い色に染 めていく.目標の色になったら、十分に水洗いをし 乾燥して仕上げる.

図 15 染色:空気に触れると酸化して発色する.(松茂町歴史民俗資料館提供)

このように, 藍染めは最初から濃く染まるのでは なく, 何度も染料液に浸けて酸化する工程を繰り返 すことによって濃淡を調整している.

日本人は、単なる薄い藍色、濃い藍色という区別 ではなく、それぞれに色の名前をつけて楽しんでき た.図16にその例を示している[16].このように藍 は、藍色だけでなく微妙に違った幅広い色を染める ことができる.

最後に, 天然染料と合成染料は分子構造が同じで あるにもかかわらず, 仕上がった作品には差がある のであろうか.これについて, イギリスで合成藍で の染色を行い日本に滞在して日下田紺屋で阿波の 蒅を使った天然藍の染色を体験したリンダ・ブラシ ントンは,「合成藍では極めて濃い藍色や淡い藍色

図 16 藍染めでは幅広い濃淡の色が表現でき、それぞれに名前がつけられている.([16] を参考に、[17,18]を利用して作成.)

を出すのがむずかしいが,天然藍は水色のような淡い色からとても濃い藍色まで染められ,表現できる 色の幅がとても広い」と印象を述べている[19].

より微細な観点からは、川人ら[20]は、天然藍の 染色布では主に繊維表面で染料が集まっているた めにより鮮やかな色になり、かつ正規分布を示す微 細な「滲(にじみ)」があってこれが自然な「色む ら」を感じさせていると述べている.

5. おわりに

以上から,本稿の主題である伝統的藍染め技術と「熱」との関わりについて考えると、大きくは次の 3点にまとめられる.

第一は、まず「蒅法」か「沈殿法」かの選択であ る.インドや中国南部などの気温の高い低緯度地帯 においては、含藍植物中の含藍量も多く、屋外の水 槽で特別な加熱はなく藍成分を沈殿させる「沈殿法」 が発達した[1].これに対し、中緯度地帯に位置する 日本やヨーロッパにおいては、屋内で醗酵時の発熱 を利用して温度を維持しつつ醗酵させる「蒅法」が 発達してきた.このようにこの二つの選択は、含藍 植物の成長及び収穫時期における気温の差が主た る要因であると考えられる.(温度と熱は異なる概 念であるが、ここでは簡単のためにこの記述に留め る.)

第二は蒅の製造における温度管理である. 藍葉の 醗酵のための適温は 50℃前後と常温よりも高いた め[3],何らかの熱源が必要である.これについては, 醗酵に伴う発熱自体を熱源として利用し,均一かつ 適切な温度になるように,断続的に攪拌しつつ"床 (とこ)"の厚さや"筵"(ふとんと呼ばれる)の量 を調節して適温を得ている.かつては,過度の温度 上昇を防ぎ,かつ付加的な燃料を用いないためであ ったろうが,現代的な観点からは,環境の保全にも 配慮した方法となっている.

第三には、藍建てにおける温度管理である.この ときに働く還元菌にとっての最適温度は 20~30℃ であるため[13], 冬期を含めて年間を通して染色を 行うために 200 年ほど前から熱源が導入されるよ うになった.それ以前から藍甕を土中に埋没させて 保温するようにもなっており,熱源はおが屑をいぶ す程度のものである.染色場全体の規模が大きくな ると,藍甕の数を増やしてこれらを碁盤の目のマト リックス状に配置し,その中に規則的に熱源を分散 して配置する方式が開発された(図 14). これは, 染色の作業性からも,少量の熱源で均一な温度分布 を得る上からも,理にかなった方法であると言える.

本稿の成立過程は冒頭にも述べたが,2019年の 徳島における日本伝熱シンポジウムに於いて,阿波 藍の伝統技術と「熱」との関わりに関するオーガナ イズドセッションを開催した際に,藍の栽培から伝 統的な蒅づくりや後進の育成にもあたっておられ る藍師の新居修氏(現代の名工)と,阿波藍に関す る歴史的資料を収集保存する三木文庫の学芸員で ありかつ藍染めの指導者でもある舩井由美子氏に ご講演をお願いした.お二人からは阿波藍への熱い お気持ちのこもったご講演をいただいたことに心 から感謝したい.本報は,このときのご講演原稿及 び資料を基に,河村が多少の調査と考察を加え,お 二人のご校閲を得つつまとめたもので,全体の文責 は河村にある.

以下は、お二人からいただいたコメントである. ◎この講演会のあった数日前に阿波藍が日本文化 遺産に認定されました.関係者の方々の努力が認め られましたのは大変喜ばしいことです.ちょうどこ のような機会に、熱に関する研究をしておられる貴 学会のシンポジウムで阿波藍についてのご紹介が できたことは大変うれしいことでしたし、藍染めの 伝統技術が熱に深く関わっていることを改めて認 識することが出来て、大変有意義でもございまし た.

わたくしが勤務します三木文庫が所在する松茂 町では、この阿波藍の伝統を後に伝えて発展させて ゆくために、町内の幼稚園児には親子での藍染め体 験を、また小学6年生には小学校の思い出を卒業記 念として藍染め作品を制作してもらっております. わたくしもお手伝いをさせて頂いておりますが、藍 甕から作品を引き上げて藍色に変わっていくとき の子ども達の歓声を聞きその目の輝きを見るのは、 とてもうれしくまた心づよいことです.

三木文庫においては、本文中にも述べましたよう に、当家が江戸時代に藍商として栄えた時代の阿波 藍関係資料、さらにこの地方の阿波人形浄瑠璃芝居 関係資料や地方の各種の古文書などを数多く収蔵 しています.阿波藍関係資料は、地方史や流通経済 史などの研究者に数多く利用され、三木家の経営や 阿波藍の流通について論じられるのに役立ってお ります.しかし大福帳など多くの史料は、江戸時代 に作成されたものであるため、未だ大部分が解明さ れておりません、今後も少しでも多くの史料を解読 し整理して提供することにより、阿波における藍の 歴史のみならず全国に拡がる阿波藍史を後世に伝 えていけるよう取り組んで参りたいと存じており ます.(舩井由美子)

◎今回の講演会では、ご依頼を受けて伝統的な藍の 栽培から蒅づくりについてお話しをさせて頂いた. 家業を継いで蒅づくりに携っている藍師であるが、 現在では蒅づくりのほかに、藍の栽培や製品である 蒅の活用も含めて、総合的に阿波藍の伝統技術の保 存とその発展に努めている.阿波藍を取り巻く環境 は変化しており、その中で、伝統技術の重要な部分 は維持しつつも時代に応じた改良を加え、新たな活 用分野を開拓し、かつ次世代に伝えていくことが重 要であると考えている.

本稿に収録されている蒅づくりの写真(図 8,10) で共に作業をしている人たちは県内外からの研修 者で,このようにして藍づくりを身につけてもらっ ている.すでにこれらの修了者たちの何人もが,地 元に戻って藍の栽培,蒅づくりから藍染め作品の製 作頒布までの拠点を作りつつあることは大変よろ こばしいことである.これらを通じて,今後も阿波 藍の伝統の保存と発展,さらには次世代への継承に 一層の力を尽くして行きたい.(新居 修)

本稿の作成にあたっては、三木文庫、新居製藍所、 松茂町歴史民俗資料館から資料のご提供を頂いた. また、徳島伝熱シンポジウムにおけるオーガナイズ ドセッションの開催については、出口祥啓先生(徳 島大学)をはじめとする実行委員会にご支援を頂い た.ここに記して感謝する.(河村 洋)

参考文献

[1] 吉岡常雄, "天然染料の研究, 理論と実際染色 法", (1974), 光村推古書院.

[2] J. C. Splitstoser, et al., "Early pre-Hispanic use of indigo blue in Peru", Science Advances, (2016), 2,

e1501623.

[3] D. Cardon, "Natural Dyes; Sources, Tradition, Technology and Science", 2007, Archetype Publications.
[4] 三木産業(株)技術室(編), "藍染めの歴史と科学", (1992), 裳華房.

[5] 宮内庁: 正倉院御物検索, http://shosoin. kunaicho.go.jp/jaJP/Treasure?id=0000014723

[6]吉岡幸雄,"日本人の愛した色",新潮選書, (2008),新潮社.

[7]国会図書館ディジタルコレクション:歌川広重 東海道五拾参次 戸塚・元町別道, http://dl.ndl.go.jp /info:ndljp/pid/1309894

[8] 青木正明, "天然染料の科学", (2019), 日刊工業 新聞社.

[9]三木産業(編),"出藍録",(1955),三木産業(株).

[10]三木文庫(編), "天半藍色", (1974) 三木産業 (株).

[11]新居製藍所, "阿波藍をつくる, 藍師 新居修の 技術"(ビデオ), https://nii-seiaisyo.jimdo.com/ホーム /video/

[12]高原, 田辺, 醗酵学会雑誌, 38-6, p.293, p.297, 38-7, p.329, 40-2, p.77.

[13]大島,新居,本多,公開特許公報(A),インジゴ
 還元酵素及びその製造法,出願番号 2005035889,
 (2006).

[14]湯本勲,科研費研究成果報告書,課題番号 23570128,(2015).

[15]日下田藍染め工房 益子町観光協会,

http://www.mashiko-kankou.org/shop/?shop=00493 [16]野田,新谷,月刊「染織α」,No.193, (1997), pp. 18-19, 染織と生活社.

[17]和色大辞典, https://www.colordic.org/w

[18]カラーサイト.com, https://www.color-site.com/[19]リンダブライトン,水の文化 55 号, (2017),

pp.28-31, ミツカン水の文化センター.

[20]川人美洋子ら,学振,繊維・高分子機能加工第 120 委員会年次報告, Vol.53, pp.28-31, (2002).

ニュートンの冷却法則(その3) -強制対流実験-

Newton's Law of Cooling, Part 3, Experiment on Forced Convection

> 圓山 重直(八戸高専),守谷 修一(東北大学) Shigenao MARUYAMA (INT, Hachinohe College), Syuichi MORIYA (Tohoku University) e-mail: maruyama-o@hachinohe-ct.ac.jp

1. はじめに

アイザック・ニュートン (1642-1727) の冷却法 則についての論文「Scala graduum Caloris. (A Scale of the Degree of Heat, 温度の尺度)」[1][2]について, 前報 (その1)[3]では,高温物体の温度計測につい て議論しました.前報 (その2)[4]では,水の沸点 以下の温度について,ニュートン温度の精度や,当 時のイギリスの気温について議論しました.

伝熱工学の教科書で、対流熱伝達の基礎式として 使われているニュートンの冷却法則は、熱流束q, 流体と物体の温度差 $T - T_{\infty}$, 熱伝達率h としたと き、

$$q = h(T - T_{\infty}) \tag{1}$$

で記述されています. ニュートンの論文[1]では, 物体の温度計測が中心で,式(1)は論文中には出て きません.

ニュートンは、物体が冷却する速さは物体と周囲

の空気温度の差に比例するとしました.また,物体 は風が吹いている状態で冷やしたという記述があ ります.この2つの文章が「ニュートンの冷却法則」 の起源と考えられます.

私たちは、ニュートンの論文を強制対流熱伝達の よりどころとしていますが、論文では風の速度は明 示されていません.本報では、ニュートンがこの実 験をしたとき、どの様な風が吹いていたのかを解明 するために、風洞実験を行いました.その結果から、 ニュートンの実験を再現することを試みました.

2. ニュートンの実験結果

ニュートンは独自に温度計を作り色々な現象の 温度を計測しました.低温の温度計測は前報(その 2)[4]に,高温の現象は前報(その1)[3]に記載し ています.それらを纏めたものを本報の最後に記し ている表1に示します.表には,ニュートンの論文

中の表で示された値に加えて,文章で記述された温 度も記載しています.

ニュートンは、重さ 4.25 lb の厚い板状の鉄塊を 台所のコンロで燃えている石炭の中に投入し赤く 加熱しました.その赤熱した鉄塊を取り出して、冷 たい場所に置きました.鉄塊の上には種々の金属や 合金の粒を置き、それが凝固する時間を測定しまし た[2].このようにして測定した温度を表 1 に示し ています.

ニュートンは2つの温度表記を用いています. 一つは, $T(\mathbf{N})$ で記載する通常の温度(Equal part of heat)[2]で,式(2)で表記します[4].

$$T(^{\circ}C) = T(N) \times 100/34$$
 (2)

もう一つは対数温度に相当する等比数列温度 (degree of heat in geometrical progression)[2]で, ニュ ートン温度を $T(\mathbf{N})$ として次式で定義します.

$$T' = \log_2(T/12) + 1 \tag{3}$$

表1中には、ニュートン温度、セルシウス温度、等 比数列温度を示しています. さらに、Grigull が推 定した温度[5]も示しています. Grigull の温度は、 高温部分では冶金学的に推定した温度であり、ニュ ートンの温度より高くなっています.

図1は,表1の値を等比数列温度で表しています. ニュートンの論文では冷却時間が記載されていないので,図1は表1の温度を実験開始から体温に相当する12Nになるまでの時間で無次元化しています.

ニュートンの実験では、鉄塊の大きさと、等価平 均熱伝達率 \overline{h} から推定されるビオ数は 0.005~ 0.011 と小さいので、集中熱容量系が適用できて冷 却曲線は次式で表されます.

$$c\rho V \frac{\mathrm{d}T}{\mathrm{d}t} = -\overline{h}S(T - T_{\infty}) \tag{4}$$

ここで、cは鉄塊の比熱、 ρ 密度、V体積、S底 面を除いた表面積、t時間です。初期温度が T_1 で、 対流熱伝達率とふく射熱伝達率を合わせた等価平 均熱伝達率が物体温度によらず一定の時、式(4)は 次式で表されます。

$$\frac{hS}{c\rho V}t = \ln(T_1 - T_\infty) - \ln(T - T_\infty)$$
(5)

$$T_{\infty} = 0$$
として,式(2)を式(5)に代入すると,

$$T' = T'_{1} - \frac{\overline{hS}}{c\rho V \ln 2}t \tag{6}$$

となります.つまり,等比数列温度*T*'を時間*t*で 表すと,図1に示すように直線となり,前報(その 1)[3]で示したように,温度計で測れない温度を 推定することができるのです.そこが,ニュートン 論文の重要なところであり,ニュートンの冷却法則 はそれをサポートする仮定にすぎないのです.

ただし,集中熱容量系を反映させるためには,式 (3)の温度は,周囲空気との温度差であるべきです. ニュートンが実験したときの環境温度は2N(5.9℃) と推定され [6],ニュートンが目指した高温物体の 温度の推定には環境温度を0Nとしても大差あり ませんでした.

前述したように、ニュートンの論文では、実験時 に風が吹いていたという記述はありますが、その風 の強さについては言及していません.物体の冷却速 度は、ふく射伝熱も考慮した等価熱伝達率に依存す るので、冷却時間が分からないと風速の推定ができ ません. Ruffner は冷却時間を 60 分と仮定し [7]、 Grigull は 77 分と推定しました[8]. どちらも明確な 根拠はありません.

ニュートンはこの実験の他にも,鉄塊の冷却実験 を行っています. その時 100N から 12N に冷却す るまでの時間は 132 分でした[6]. しかし,その実 験がこの実験[1]と同じ風速下で行われたという証 拠はありません.

そこで,ニュートンの実験を再現するために,簡 易風洞を製作し,鉄塊の冷却実験を行いました.

3. 実験装置および実験方法

3.1 簡易風洞の製作 ニュートンの実験を再現す るために吹き出し型の簡易風洞を製作しました.図 2 は、その簡易風洞と実験装置の概略を示していま す.風洞は設置スペースを小さくするために、遠心 ファンから放出された空気を L 字型に偏向して吹 き出しノズルから噴出させました.L字型風路には アルミ製ハニカムを入れて整流し、角部には直径 120mm のビニールパイプを切断した円弧翼で構成 される偏流板を設置しました.風路部の断面積は 450×450 mm、ノズル出口断面積は 200×200 mm でした.

図2 簡易風洞による実験装置

計測部における風速分布は横方向 2%, 縦方向 4%であり、ノズル中央近傍では一定でした. ノズ ル中央部の測定部での流れの乱れ強さは 1~2%で した.本風洞は遠心ファンの回転数をインバータで 制御することにより、2~25 m/s の風速を得ること ができました.

3.2 表面放射率の測定 高温物体の伝熱にはふく 射が大きく寄与します.赤熱した鉄塊を取り出した 直後は,ふく射伝熱量は対流熱伝達量に比べて 50 倍以上となります.

そこで、図2に示すように、実験中は放射率 ε を 1 に設定した赤外線カメラを設置して放射率の変 化をモニターしました.赤外線カメラの測定温度を $T_{R}(\mathbf{K})$ とすると、物体表面の放射率は次式で表さ れます.

$$\varepsilon = (T_{IR}^4 - T_{\infty}^4) / (T^4 - T_{\infty}^4)$$
(7)

赤外線カメラの測定によると,風洞実験中の表面 温度分布は鋳鉄板角の一部以外はほぼ一様である ことが確認されました.

3.3 実験方法 大きさ 103×107×27 mm (約4×4×1 inch), 質量 1.93 kg (4.25 lb)の鋳鉄板を設定温 度 800℃の加熱炉に入れ加熱しました.

風速を設定速度に調整した風洞の測定部にコモンペーバレンガを敷き,その上に鋳鉄板を置いて, 鋳鉄中央に設置された直径 1.5mmの K 型熱電対により冷却温度を測定しました.その時,鋳鉄板上部に設置された赤外線カメラで表面温度をモニターしています.

鋳鉄板のビオ数が小さいので, 内部に設置された 熱電対の温度は, 表面温度に近い値と推定されます.

4. 結果と考察

図3は、風洞実験とニュートンの実験による鉄 塊温度を対数温度目盛りで示しています.表1に 示すニュートン論文の実験は、時間が掲載されて いるニュートンの別実験[6]で体温となった時間 (132分)となるように表示しました.

図中には、本報で作製した簡易風洞の測定部に

図3 風洞実験でニュートンの実験を再現した実験値と推定式の比較,および,ニュートンの実験 データを再現する風速の推定

加熱した鉄塊をレンガ上に置いた場合の実験値を 示しています.実験データは1秒ごとに取得し, 鉄塊温度が空気流温度とほぼ一致するまで実験を 継続しました.

鉄塊の冷却温度は次式で表されます.

$$c\rho V \frac{\mathrm{d}T}{\mathrm{d}t} = -S\{\overline{h}_{c}(T - T_{\infty}) + \varepsilon(T^{4} - T_{\infty}^{4})\} (8)$$

1 辺 D の正方形断面角柱の対流平均熱伝達率 h_c の推定は, Hilpert の経験式[9]

$$Nu_{D} = \bar{h}_{c}D/k = CRe_{D}^{m}Pr^{1/3},$$

$$\Box \subset \heartsuit \quad C = 0.102, \quad m = 0.675$$
⁽⁹⁾

を用いました.ただし、板状鉄塊は角柱とは形状が 異なるので、Dを鉄塊の水力直径とし、定数Cを 調整して実験値に合わせた結果、式(9)のCを 0.26 とすることで、実験値と良く一致しました.

鉄塊の放射率 εは、赤外線カメラから式(7)で求め、100℃~500℃のデータを平均して使用しました.

図 3 には各風速の風洞実験と式(9)の推定値を示 していますが良く一致していることがわかります.

次に、この実験式を使って、ニュートン論文の実 験結果を模擬する風速を推定しました.初期温度は Grigull の推定温度から始まり、ニュートンの実験 の条件[6]と考えられる気温5.9℃の環境下での鉄塊 の温度低下を推定しました.この時、放射率は実験 データから 0.75 と設定しました.

もし、鉄塊が体温(12 N)まで、冷却するのに 132分を要する場合、風速は0.7 m/sとなります. また、Ruffner[7]が仮定したように60分で冷却する と仮定すると、その時の風速は5.0 m/sと推定され ます.ニュートン論文の実験は、ニュートンの別実 験と全く異なる条件で行ったことは考えにくいの で、余り強い風は吹いていなかった可能性が考えら れます.また、風速によって冷却時間が異なること を予備実験ですでに知っていて、ニュートンの論文 [1]では、敢えて論文では時間を書かなかったのか もしれません.

もし,風速が小さい場合,自然対流熱伝達は無視 できません.風が全くない場合でも同様な冷却曲線 を得ることができます.

5. おわりに

簡易風洞を製作し、ニュートンと同様な実験を行

い,ニュートンが実験したときの風の速度を推定し ました.

推定される風速は冷却時間で異なりますが,ニュ ートンの別実験と同じ時間を要した場合,推定風速 は 0.7m/s となり,この領域では自然対流が無視で きない範囲となります.また,自然対流のみによる 冷却が起きていたことも否定できません.

ニュートンはなぜ、風が吹いていたことを敢えて 記述したのでしょうか.また、どのようにして、等 比数列温度を用いると高温が推定できることを思 いついたのでしょうか.等比数列温度については、 ニュートンの名著「プリンシピア」が関わっている 可能性があります.

これらの疑問については、次報で議論したいと思 います.

参考文献

- "Scala graduum Caloris (A Scale of the Degrees of Heat)", Philosophical Transactions, No. 270, pp. 824-829, (April 1701).
- [2] "The Correspondence of Isaac Newton, Volume IV, 1964-1709", Edited by J.F. Scott, Cambridge University Press, PP.357-365, (1967).
- [3] 円山重直, ニュートンの冷却法則 (その 1), 伝熱, Vol. 54, No. 229, pp.31-34, (2015).
- [4] 圓山重直,守谷修一,岡島淳之介,ニュートンの冷却法則(その2)ニュートンの温度スケールについての考察,伝熱,Vol. 57, No. 240, pp.65-69, (2018).
- [5] Grigull, U., "Newton's Temperature Scale and the Law of Cooling," Waerme und Stoffuebertrang, Vol. 18, pp.195-199, (1984).
- [6] Simms, D. L., "Newton's Contribution to the Science of Heat", Annals of Science, Vol. 61, pp.33-77, (2004).
- [7] Ruffner, J. A., "Reinterpretation of the Genesis of Newton's Law of Cooling," Archives of History of Exact Science, Vol. 2, pp. 138-152, (1964).
- [8] Grigull, U., Das Newtonshe Abkühlungsgesetz, Abh. Braunschweig. Wiss. Ges. 29, pp.7-31, (1978).
- [9] Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley & Sons, pp.426-427, (2007).

データ 番号	現象の記述と温度	ニュートン 温度 (N)	等比数 列温度 式(3)	摂氏 温度 (℃)	Grigull の推定 温度 (℃)
1	水が凍り始める冬の気温. この温度は,温度計を砕いた雪の中に置き,それが溶ける時に正確に計測される.	0		0.00	0
2		0		0.00	
3	冬の気温	1	-2.58 †	2.94	
4		2	-1.58 †	5.88	
5		2	-1.58 †	5.88	
6	春と秋の気温	3	-1.00 †	8.82	
7		4	-0.58 †	11.76	
8		4	-0.58 †	11.76	
9	夏の気温	5	-0.26 †	14.71	
10		6	0.00 †	17.65	
11	7月の昼頃の気温	6	0.00†	17.65	
12	温度計が人体に接触して達する最大温度. これは,鳥の 卵が孵化する温度とほぼ同じである.	12	1	35.29	37
13	風呂のお湯に手を浸して,絶えず動いている状態で,かなり の時間耐えることができる最大温度. これは採血したばかり の血液とほぼ同じである.	14.27	1.25	41.97	
14	風呂に手を動かさず浸して長時間耐えることができる最高 温度.	17	1.5	50.00	
15	お湯の上に浮かぶ溶融ワックスが凝固し始めてその透明度 を失う時の温度.	20.18	1.75	59.35	
16	ワックスが浮遊しているお湯が加熱され,沸騰せずに液体を 保つお湯の温度.	24	2	70.59	
17	ワックスが溶ける温度と水が沸騰する温度の中間の温度.	28.55	2.25	83.97	
18*	水は33度の温度で沸騰し始める.	33	2.46†	97.06	100
19*	鉄が35またけ36度に沿うた時、お準が上に変たスレ連勝	35	2.54 †	102.94	
20*	が起きなくなる. 鉄の温度が 37度で、冷たい水が滴った場	36	2.58†	105.88	
21*	- 合も同じである.		2.62 †	108.82	
22	水が激しく沸騰する温度,および,鉛2,錫3,ビスマス5の 合金が冷却時に固化する温度.	34	2.5	100.00	105

表1 ニュートン温度とその記述(番号は後で付けたもの,*は文章による温度記述を示します.等比 数列温度に†がついているものは筆者の計算値を示しています.) エデュケーションQ

23*	沸騰するお湯は, 34.5 度以上にはほとんど達しない.	34.5	2.52 †	101.47	
24	鉛1, 錫4, ビスマス5の合金が加熱され融解し, 液体を保つ 最低温度.		2.75	118.71	135
25*	この合金(錫1,ビスマス1の合金)は冷却すると47度で凝固する.	47	2.97 †	138.24	151
26	錫1,ビスマス1の合金が融解する最低温度.	48	3	141.18	151
27	錫2, ビスマス1の合金, または錫3, 鉛2の合金が融解する温度.しかし, 錫5, ビスマス2の合金が冷却時にこの温度で固化する.鉛1, ビスマス1の合金も同様である.	57	3.25	167.65	187
28	ビスマス1,錫8の合金が融解する最低温度.	68	3.5	200.00	218
29*	錫は冷却すると70度で凝固する.	70	3.54	205.88	232
30*	錫は 72 度で融解する.	72	3.58	211.76	232
31	ビスマスの融解温度, 鉛4, 錫1の合金でも同じである. しかし, 溶けている鉛5, 錫1の合金が冷却時にこの温度で凝固する.		3.75	238.24	271
32*	そして, 鉛は冷却時に 95 度で凝固する.		3.98 †	279.41	
33*	鉛が融解する最低温度.加熱された鉛は96または97度で 融解する,		4	282.35	327
34	冷却しつつある高温の物体が,暗闇の中でまったく光らなく なる温度.または,逆に,熱せられている場合には,同様の 暗闇の中で,非常にかすかに光が知覚されるようになる温 度.この温度で,錫1,アンチモン1の合金が融解し,ビス マス7,アンチモン4の合金が冷却時に凝固する.	114	4.25	335.29	420
35	高温に加熱された体が夜間には光って見えるが, 薄やみで はまったく目では確認できない温度. この温度で, アンチモ ン 2, ビスマス1の合金, ならびにアンチモン5, 錫1の合金 が冷却時に凝固する.	136	4.5	400.00	561
36*	そして、アンチモン2、銅1の合金は140.5度で凝固する.	140.5	4.55 †	413.24	
37*	アンチモンは146度で凝固する.	146	4.60 †	429.41	631
38	高温に加熱された物体が薄やみの中, つまり日の出の直前 や日の入りの直後に, はっきり光って見えるが, 日中の晴天 の光の中では全く見えないか, またはごくかすかにしか目視 できない温度.	161	4.75 †	473.53	
39	ふいごを使わずに瀝青炭が燃える小さなコンロの石炭の温度. そのような火の中で,強く輝く鉄は同じ温度である. 木を燃やした小さなコンロの火の温度はもう少し高く,つまり200度か210度である. 大規模な火の温度は,特に,ふいごによって(燃焼が)促進される場合は,更に高温になる.	192	5	564.71	

The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow - 2019 開催報告 Report on the 7th Asian Symposium on Computational Heat

Transfer and Fluid Flow-2019 (ASCHT2019)

須賀 一彦, 金田 昌之 (大阪府立大学) Kazuhiko SUGA and Masayuki KANEDA* (Osaka Prefecture University) e-mail: mkaneda@me.osakafu-u.ac.jp

1. 会議概要

2019 年 9 月 3 日から 7 日の 5 日間にわたり, 東 京理科大学葛飾キャンパス(東京都)にて, 第 7 回アジア数値熱流体シンポジウム 2019 (The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow-2019, ASCHT2019)を開催いたしま した. ご参加いただいた皆様, また運営にご協力 いただいた方々に改めて心より御礼申し上げます.

このシンポジウムは、アジア地区の熱流体シミ ュレーション関連の最新の研究発表と研究者間の 交流を促進するものとして、2007年に中国西安で 第1回目が開催され、以来2年ごとにアジア各地 で開催されています、2009年・済州(韓国)、2011 年・京都(日本)、2013年・香港(中国)、2015 年・釜山(韓国)、2017年・チェンナイ(インド) に引き続き、今回は日本での2度目の開催でした、 開催地として、都心からのアクセスも良好な東京 理科大学葛飾キャンパスで行いました、会議議長 として須賀(大阪府立大学)、共同議長として Wen-Quan Tao 教授(Xi'an Jiaotong Univ., China), Nahmkeon Hur 教授(Sogang University, Korea)を 迎え、日本伝熱学会主催国際行事として運営をい たしました.

期間中,2件のプレナリ,10件のキーノートに 加えて,216件の一般講演を展開しました.一般 発表はすべて口頭発表で,これまで開催されてき た中では最大規模を誇る人数となりました.その ため9つのパラレルセッションで構成し,その中 から9件の発表に対して Best Paper Award を授賞 しました.

今回は,海外からの参加者 185 名 (12 か国,地 域)を含む総参加人数 287 名を迎えてのシンポジ ウムとなりました.その中で学生参加者は 138 名 を数え,若手を多く迎えてのシンポジウムとなり ました.

2. プログラム

本シンポジウムでは一般セッションに対して, 計 14 のセッションを組みました.セッションの主 要な課題は以下の通りです.カッコ内の数字は発 表件数を表しています.

- Heat Transfer and Fluid Dynamics (64)
- Flow and Heat Transfer Control (6)

図 1 ASCHT2019 集合写真

- Multiphase and Multi-Component Flows (36)
- Micro/Nano Fluid Dynamics and Heat Transfer (22)
- Bio-Fluid Dynamics and Heat Transfer (3)
- Turbulence (21)
- Reacting Fluid Flows (3)
- Radiative Heat Transfer (6)
- Heat Exchangers (20)
- Industrial Heat Transfer (8)
- Energy and Environmental Systems (8)
- Multi-Scale and Multi-Physics Modeling (11)
- Surrogate Modeling and Optimization (4)
- Uncertainty Analysis, Parameter Estimation, and Inverse Problems (4)

図1 学会会場

初日の Registration と Welcome reception で参加 者をお迎えしました.2日目の Opening ceremony では松本洋一郎・東京理科大学学長にご挨拶を頂 き,続く Plenary session では河村洋・東京理科大 学名誉教授, Janusz Szmyd・AGH University of Science and Technology 教授(ポーランド)にご講 演いただきました.10件のキーノートは2ないし 3 つのパラレルセッションで展開しました.昼食 には会場内の生協食堂のチケットを配布し,ベジ タリアンメニューにも対応しました.セッション の合間のコーヒーブレイクではコーヒー,ジュー スと菓子を用意しました.また,こまめな水分補 給のために会場の随所にペットボトル「理科大の 水」を配置しました.参加者の交流促進のために も,一般講演会場を講義棟の3階に集約できたこ とは良かったと思います.3日目の夜に会場から 送迎バスを用意して,東京ディズニーシー・ホテ ルミラコスタにて Banquet を開催しました.会場

河村 洋 先生

Prof. J. Szmyd I 2 Plenary session

図 3 Keynote session の様子

の美しさもさることながら,おもてなしの作法を 熟知している会場ならではの接客や出し物は大変 好評でした.すべての口頭発表終了後に閉会式を 行い,BPAの表彰と次回開催国の告知を行いまし た.

3. 参加者

本シンポジウムは主にアジア各国・地域からの 数値熱流体研究者にお声がけをしています.今回, 日本からの参加者 102 名,海外からの参加者 185 名を迎えました.国・地域別の参加者は以下の通 りです(順不同).

日本(102),中国(146),韓国(15),インド(11), 台湾(2),タイ(2),ポーランド(1),英国(1), シンガポール(3),ロシア(2),オーストリア(1), カナダ(1):計12か国・地域

4. Best Paper Award

芝原正彦先生(大阪大学)に審査委員長をお願いし, BPA 9 件を決定いたしました. なお審査に あたってはランダムに選出・依頼した原稿査読者 ならびに講演時の座長に選出していただき, セッ ション終了後に上位者を選出しました. 受賞者は 以下の通りです(順不同).

- Yusuke Kuwata, Takuya Sugiyama and Yasuo Kawaguchi, Scaling of Transitional Rough Wall Turbulent Flow Over Irregular Rough Surface
- Jiang Guo, Shenghong Ju and Junichiro Shiomi, Spectral-Selective Sky Radiator Designed via Bayesian Optimization
- Kosuke Osawa, Yuki Minamoto, Masayasu Shimura and Mamoru Tanahashi, Role of Fine Scale Eddy Cluster on Turbulent Dissipation
- Yusi Zhou and Min Chen, Molecular Dynamics Simulation on Miscible CO₂ Enhanced Oil Recovery in Nanopores
- Ayato Takii, Masashi Yamakawa, Shinichi Asao and Kyohei Tajiri, Circular Flight Simulation of Tilt-Rotor Plane

- Yi-nan Nie, Lei Chen and Wen-Quan Tao, Study on Thermal Conductivity of Nafion Molecular Chain Based on First Principle Calculation
- Xing-Jie Ren, Yan-Jun Dai and Wen-Quan Tao, Numerical Study of Thermal Contact Resistance of 8-Harness Satin Woven Pierced Composites
- Yukinori Kametani and Yosuke Hasegawa, Adjoint-Based Shape Optimization of Heat Transfer Surfaces in Turbulent Flows with DNS-RANS Hybrid Approach
- Arjun Pradeep, Anil Kumar Sharma, D Ponraju, B K Nashine and P Selvaraj, Aerosol Penetration in Submerged Gravel Bed Scrubber

5. さいごに

今回,2度目の日本での開催になりました.準備から開催まで無事にこぎつけたのは Organizing Committee の皆様のご尽力のおかげです.この場を借りて御礼申し上げます.関西 Gr と関東 Gr で タッグを組んで進めていくことで,お互いの役割 分担を明確にしつつ進めましたが,皆様のご協力 なしではこのような成功を収めることはできませんでした.

Paper and Program 委員長・芝原正彦先生(阪大), web システム・巽和也先生(京大),現地実行委員 長・塚原隆弘先生(東京理科大)には改めて御礼 申し上げます.また,現地会場準備,運営に従事 してくださった東京理科大学のスタッフ,学生の 皆さんにも心よりお礼を申し上げます.本シンポ ジウムを実施するにあたり,東京理科大学との共 催行事とさせていただきました.自然が豊富で開 放感溢れる葛飾キャンパスで実施できたことに感 謝申し上げます.

なお次回の開催地については International Advisory Committee で協議した結果, 2021 年にシンガポール国立大学での開催が決定となりました. 開催時期の詳細は追ってご連絡できればと思います.

日本伝熱学会主催講習会

「計測技術 ~温度・熱流・熱伝導率測定の基礎と応用~」開催報告 Report on the Lecture "Measurement Technology, from Foundation and Application of Temperature, Heat Flux and Thermal Conductivity Measurement"

企画部会産学交流委員会:羽鳥 仁人 (ベテル),近藤 義広 (日立アカデミー),西 剛伺 (足利大学) Kimihito HATORI (Bethel), Yoshihiro KONDO (Hitachi Academy) and Koji NISHI (Ashikaga University), e-mail: k-hatori@btl-hrd.jp

1. はじめに

毎年,日本伝熱学会の産学交流事業の一環として,企業技術者等の実務に直結したテーマを選択し,日本伝熱学会主催の講習会を開催しています.

今年度は「計測技術 〜温度・熱流・熱伝導率測 定の基礎と応用〜」をテーマに開催することにな りました.JR 東京駅から徒歩圏内の東京八重洲 ホールにて、11月22日,以下の題目で開催し、 34名にご参加頂き,盛況のうちに終えることがで きました(図1).

- -題目-
- ① 開催の挨拶(10分)
- ② 放射温度計の正しい使い方(40分)
- ③ 熱流センサーの基礎と校正技術(70分)
 一昼食休憩一
- ④ 熱電対の正しい使い方および測定誤差の支配 的要因(70分)
- ⑤ 定常法による熱伝導率測定(70分)
- ⑥ フラッシュ法による熱拡散率測定(40分)
- ⑦ 融体の熱物性(熱伝導率,粘性)(40分)
- ⑧ 総合討論(30分)
- ⑨ 講師との技術交流会

2. 各題目について

②の「放射温度計の正しい使い方」の講義では, 中村元教授(防衛大学校)より,放射温度計の基礎として測定原理と測定方式及び素子による分類 などについてご説明いただきました(図2).測定 誤差要因については,放射率の校正方法や周囲環 境により受光する赤外線放射量に大きく影響を受けることをご説明いただき,各種の誤差要因に対 する具体的な対処方法を解説頂きました.

③の「熱流センサーの基礎と校正技術」の講義

では、阿子島めぐみ氏(産業技術総合研究所)よ り、熱流センサーの原理及び熱流センサーを校正 するための、熱流密度評価装置をご説明いただき ました(図3).校正時の誤差要因については不確 かさ評価方法の説明を交えながら詳しく解説頂き ました.また、現在データ収集中の熱流センサー の実用評価技術につきましては、空気中や真空中 における熱流センサーの挙動も解説頂き、今後の データの集積が期待されます.

④の「熱電対の正しい使い方および測定誤差の 支配的要因」の講義では田川正人教授(名古屋工 業大学)より,熱電対の測定原理と取り扱いの基 礎,各種規格別のそれぞれの熱電対の特長につい てわかりやすくご説明いただきました(図4).複 雑な熱電対回路についてもチャートを用いること で,熱起電力がどのように発生しているのか評価 できる手法を説明いただき,例えば熱電対の劣化 や不均質な場合にどのような影響が発生するのか 等をわかりやすく理解できました.また,熱電対 の誤差要因として熱伝導誤差や応答遅れ誤差等を 詳しく解説頂き,今後の現場での応用につながる ような問題を提供していただきました.

図1 会場全体風景

⑤の「定常法に よる熱伝導率測 定|の講義では、 梶田欣氏(名古屋 市工業研究所)よ り,新規開発され た定常法熱伝導率 測定装置の原理, 構成, 誤差評価結 果について解説頂 きました (図 5). 誤差評価について は、モデルによる 解析により、周囲 の断熱材の影響は 軽微で,むしろ大 気中のほうが良い

図2 講義風景 (放射温度計の正しい 使い方,中村先生)

場合があること,側面からの熱リークの影響の評価をご説明いただきました.今回ご紹介いただいた装置は,構造や解析方法の工夫により測定時間の大幅な短縮に成功し,産業界での幅広い応用が 期待されます.

⑥の「フラッシュ法による熱拡散率測定」の講 義では、太田弘道教授(茨城大学大学院)より、 非定常法熱拡散率/熱伝導率測定装置として最も 普及している、フラッシュ法についてご説明いた だきました(図6).フラッシュ法の原理及び構成 を実際の装置の写真及び動画を交えながらわかり やすく解説頂きました.複合材料の測定で問題に なる、温度上昇や解析についてインターネット、 規格書、教科書には載っていない対処方法を具体 的にご紹介いただき、実際の測定現場で役立つ情 報が得られました.

⑦の「融体の熱物性(熱伝導率,粘性)」の講義 では,西剛史准教授(茨城大学大学院)より,金 属ガラスやケイ酸塩融体のフラッシュ法による熱 拡散率測定の具体例と,その結果から導き出され る材料構造の知見等を解説頂きました(図7).ま た,各種の粘性率測定装置(細管法,回転法,る つぼ回転振動法)と解析手法をご説明いただき, はんだや溶融ニッケルの粘性率測定の具体例を学 習しました.

⑧の総合討論では、受講者にあらかじめ配布し たシートに質問を記入してもらい、その内容を講 師の先生方が確認,質問事項を抽出していただき, 説明するという形式で行われました.従来と同様 温度計測に関する質問が多数ありましたが,それ に加えて,熱流センサーに関する質問も多数あり, 熱流センサーに関する潜在的なニーズも多くある ことが確認できました.

⑨の講師との技術交流会は、同会場を立食パー ティー形式に模様替えした形で行われ、講師の先 生方への個別の質問の場、受講者間の交流の場と なりました.各分野で知見のある先生方に直接お 話を伺える絶好の機会であることから、会場の各 所で活発に先生方に質問する参加者の姿が多く見 られました.参加者同士に先生方を加えて、現在 の課題について意見交換する様子も多く見られま した.有意義な問題解決や情報交換の場となった のではないかと思われます.

3. 全体の印象, アンケート結果

参加者の内訳は、65%が企業の方で、26%が大 学関係の方で、9%が官公庁の方でした.昼間の各 講義、夕刻の技術交流会含め、産学交流委員会の 活動目的である産学官交流の活性化の一助になっ たものと思います.

熱関連計測で代表的なセンサーである,熱電対, 放射温度計,熱流センサーを網羅し,熱伝導率計 測では定常法と非定常法の事例を紹介し,熱に関 して基本的な計測技術を概観できるため,多くの

受講者にとって有 益であったと考え ています.アンケ ート結果について もほとんどすべて がした.

今後の講習会の 企画については, 流体,燃焼,電気 自動車,非接触温 度計測技術,材料 物性を中心とした 計測で意見があり, 今後の企画の参考 にさせて頂きます.

図3 講義風景 (熱流センサーの基礎 と校正技術,阿子島氏)

4. おわりに

産学交流委員会では,産学交流を促進するため, 現在,さまざまなイベントを検討中です.本講習 会は,その中のアイテムの1つとして,本年も開 催に向け,準備を進めて参ります.詳細が決まり 次第,別途ご案内します.講習会を含む産学交流 イベントへの皆様のご参加をお待ちしています.

最後に,講師の皆様には,ご多忙のところ,資 料作成含め,ご協力を頂きまして,ありがとうご ざいました.紙面をお借りして,改めて感謝申し 上げます.

図4 講義風景 (熱電対の正しい使い方および測 定誤差の支配的要因,田川先生)

図 5 講義風景 (定常法による熱伝導率測定,梶田氏)

図 6 講義風景 (フラッシュ法による熱拡散率測定, 太田先生)

図7 講義風景 (融体の熱物性(熱伝導率,粘性), 西先生)

* -	亡/提	行車
半云:	土作	1] 尹

平云工间	11					
開催日		行事名	申込締切	原稿締切	問合先	掲載号
2020年						
1月	10(金)	International Seminar in Fukui			実行委員長:永井二郎(福井大学)	
	\sim	-Japan-China Heat Transfer Symposium			E-mail: nagai@u-fukui.ac.jp	
	11(+)	2020-			U U U	
	11(1.)	(日中伝熱シンポジウム 2020)				
6月	3(水)	第 57 回日本伝熱シンポジウム	2020.1.17	2020.3.13	実行委員長 : 多田幸生(金沢大学)	
	\sim	(石川県地場産業振興センター)				
	5(会)					
	J(12)					
		. A contract that A mark				
11 月	15(日)	アジア熱科学会議 2020	2020.3.27	2020.5.30	ACTS2020 実行委員会	
	\sim	(2 nd ACTS)			secretary@acts2020jp.org	
	10(木)					
	19(2)					
				1		

本会共催,協賛,後援行事						
開催日		行事名	申込締切	原稿締切	問合先	掲載号
2020年						
1月	23(木)	第 48 回ガスタービンセミナー			(公社) 日本ガスタービン学会事務局	
	~				Tel:03-3365-0095	
	24(欣)				E-mail:gtsj-desk@gtsj.org	
3月	5(木)	第1回世界エンジニアリングデイ記念			(公社) 日本工学会	
		シンポジウム			eng@jfes.or.jp	
6月	18(木)	20-19 講習会「第25回動力・エネル	2020.2.21	2020.4.24	(一社) 日本機械学会総合企画 G	
	~	ギー技術シンポジウム」			森本あかね morimoto@jsme.or.jp	
	19(欣)					
10月	13(火)	31st International Symposium on			ISTP31 実行委員会委員長	
	~	Transport Phenomena (ISTP31)			横野泰之	
	16(金)				yokono@mech.t.u-tokyo.ac.jp	

第57回日本伝熱シンポジウムのご案内

第 57 回日本伝熱シンポジウム実行委員会 委員長 多田 幸生

幹事 寺岡 喜和

開催日: 令和2年6月3日(水)~6月5日(金)

会 場: 石川県地場産業振興センター(https://www.isico.or.jp/site/jibasan/)

所在地 〒920-8203 石川県金沢市鞍月2丁目1番地 電話 076-268-2010

アクセス 北陸新幹線/北陸本線 「JR 金沢駅 港口(西口)」より学会専用シャトルバスまたは 北陸鉄道バスで 20 分, タクシーで 15 分

飛行機をご利用の場合「小松空港」より JR 金沢駅まで空港連絡バスで 40 分

講演申込締切: 令和2年1月17日(金)

講演論文原稿提出締切: 令和2年3月13日(金)

早期参加申込締切: 令和2年4月17日(金)

ホームページ: URL: https://htsj-conf.org/symp2020/

【シンポジウムの形式】

- 講演発表形式として
 - a) 通常の一般セッション(口頭発表)
 - b) オーガナイズドセッション(口頭発表)

c) 学生および若手研究者を対象とする優秀プレゼンテーション賞セッション

を実施します.

- 1 講演あたりの割当時間は、一般セッションでは 15 分(発表 10 分、個別討論 5 分)で、各セッションの 最後に総合討論の時間(5 分×セッション内の講演件数)を設ける予定です.オーガナイズドセッション については、オーガナイザーの指示に従って下さい.
- 優秀プレゼンテーション賞セッションについては、本号掲載のお知らせ「優秀プレゼンテーション賞 (第 57 回日本伝熱シンポジウム)について」をご参照下さい.

【参加費等】

● 参加申込の時期

早期申込:4月17日(金)まで 通常申込:4月18日(土)以降(5月中旬までに参加登録を完了された方には,事前に参加者キットを お送りします)

● シンポジウム参加費

会員一般	早期申込:14,000円	通常申込:17,000円
非会員一般	早期申込:17,000円	通常申込:20,000円
会員学生	早期申込: 8,000円	通常申込: 9,000円
非会員学生	早期申込: 9,000円	通常申込:10,000円

※特別賛助会員は1口につき3名, 賛助会員は1口につき1名, 参加費が無料になります. ※会員とは,日本伝熱学会会員のほか,共催・協賛学協会の会員を含みます. ※講演論文集電子版は参加者全員に配布されます. 講演論文集電子版
 講演論文集電子版のみの販売: 5,000円(シンポジウム後の販売となります.)

【意見交換会】

- 開催日:令和2年6月4日(木)
- 会 場:金沢城五十間長屋(〒920-0937 石川県金沢市丸の内1番1号)
- 参加費:一般 早期申込:8,000円,通常申込:10,000円 同伴配偶者無料
 学生 早期申込:4,000円,通常申込: 5,000円

【参加登録と参加費等の支払い方法】

- 参加登録は本シンポジウムのウェブページから行ってください.
- 参加費等の支払いは、参加登録のページからのクレジットカード決済、もしくは銀行振込になります、
 参加費等の支払いをもって「参加登録の完了」とします.
- 銀行振込による早期申込みをされる場合は、4月17日までに振込をお済ませください.
- 銀行振込による支払では振込用紙等は用意いたしません. 振込手数料は各自でご負担願います.
- 4月18日以降もウェブページからの参加登録が可能です.参加費は通常申込扱いとなります.
- 5月中旬までに参加登録を完了された方には事前に参加者キット(講演論文集電子版,講演プログラム, 参加票,領収書など)をお送りします.
- シンポジウム当日も参加登録と参加費等の支払いができます.

講演申込方法,講演論文集,執筆要綱

【研究発表申込方法】

- 一般セッションと優秀プレゼンテーション賞セッションの講演者(登壇者)は、日本伝熱学会会員(学 生会員,賛助会員,特別賛助会員,推薦会員を含む)に限ります.講演者が日本伝熱学会会員でない場 合は、会員申込と会費納付を行って下さい.(オーガナイズドセッションについては、各セッションのオ ーガナイザーの指示に従って下さい.)
- 原則としてウェブによる申込みに限らせて頂きます。本シンポジウムで準備するウェブサイトから必要 なデータを入力して下さい。ウェブによる申込みができない場合には、実行委員会事務局にお問い合わ せ下さい。
- 申込みの際に、一般セッション、オーガナイズドセッション、優秀プレゼンテーション賞セッションのいずれで発表するかを選択して下さい. 優秀プレゼンテーション賞セッションにお申込みの場合には、本号掲載のお知らせ「優秀プレゼンテーション賞(第57回日本伝熱シンポジウム)について」をご参照下さい.
- 発表申込み時に,論文要旨(日本語で200~250字)を入力して下さい.講演論文集の抄録として科学技術振興機構(JST)のデータベースに登録します.
- 講演発表申込は,講演者1名につき1題目とさせて頂きます.
- 講演の採否およびセッションへの振り分けは、実行委員会にご一任下さい.

【講演論文集電子版】

- 従来の講演論文とは別に、当該講演内容を後日原著論文として TSE 以外の学術雑誌等に投稿する場合 は、二重投稿にならないように配慮して1ページの講演アブストラクトを提出することができます.
- 講演アブストラクトは A4 サイズで1ページ,講演論文は A4 サイズで 2~6ページとします.

- 講演論文と講演アブストラクトは講演論文集として電子版のみを発行し、冊子版は発行しません.
- 講演論文集電子版を参加者に配布します. なお, 講演論文集電子版は参加できなかった日本伝熱学会会 員にも希望があれば配布しますので,シンポジウム終了後に日本伝熱学会事務局にお申込み下さい.
- 講演論文集は会員を対象にパスワードを配布し、シンポジウム開催日の2週間程前からウェブ上で公開 します.従って、特許に関わる公知日はシンポジウム開催日よりも早くなりますのでご注意ください.
- シンポジウム終了後,一定期間を経て講演論文集のウェブ上での公開を終了します.
- 原稿提出締切日までに提出されなかった場合は、講演論文集に掲載されません、十分にご注意下さい、

【執筆要綱】

- 以下の4つの原稿のうちから選択して執筆して下さい.
 - ① 講演論文(一般セッション、オーガナイズドセッション、優秀プレゼンテーション賞セッション)
 ② 講演アブストラクト(一般セッション、オーガナイズドセッション、優秀プレゼンテーション賞セッション)
 - ③ Full size manuscript
 - ④ Abstract manuscript
- 各原稿の書式の詳細ならびにテンプレートは、シンポジウムのホームページをご参照ください.
- 論文表題および著者名は,講演申込時のデータと同じものを同じ順序で書いてください.講演申込時の データと異なる場合には,目次や索引に反映されないことがあります.
- PDF ファイル作成のためのファイル変換時には、「フォントの埋め込みを行う」を設定してください.提 出前に必ず、変換後の PDF 原稿を印刷して確認して下さい.

① 講演論文(一般セッション,オーガナイズドセッション,優秀プレゼンテーション賞セッション)

表題部分の書式: 原稿は,以下の四角囲い部に示すように,和文表題,和文副題,英文表題,英文副題,和 文著者名(会員資格,著者名,所属の略記),英文著者名,英文所属機関・所在地,英文アブストラクト,英 文キーワードの順に,幅140mm に収まるようにレイアウトしてください.連名者がある場合には,講演者の 前に*印をつけ,英文の所属機関・所在地についても上付き数字で区別してください.

本文の書式: 本文は表題部分に続けて,10ポイント明朝体の1段組み(1行 50 字程度),1ページ当たり46 行を目安として作成してください.

図表:図表中の記号およびキャプションは英語で書いてください.カラー表示が可能です.

参考文献:参考文献は本文中の引用箇所の右肩に小括弧をつけた番号⁽¹⁾で表し,本文の末尾に次のようにま とめて列記してください.

(番号) 著者名, 雑誌略称, 巻-号(発行年), 先頭ページ番号.

例:(1) 伝熱·他2名, 機論(B), 12-345(2006), 1234.

② 講演アブストラクト(一般セッション、オーガナイズドセッション、優秀プレゼンテーション賞セッション)

表題部分の書式: 原稿は,以下の四角囲い部に示すように,和文表題,和文副題,英文表題,英文副題,和 文著者名(会員資格,著者名,所属の略記),英文著者名,英文所属機関・所在地の順に,幅140mm に収ま るようにレイアウトしてください.連名者がある場合には,講演者の前に*印をつけ,英文の所属機関・所 在地についても上付き数字で区別してください. **アブストラクトの書式**: アブストラクトは表題部分に続けて,10 ポイント明朝体の1 段組み(1 行 50 字程 度),1ページ 46 行を目安として作成してください.

図表: 図表中の記号およびキャプションは英語で書いてください. カラー表示が可能です. 掲載にあたり,

← 140 mm →
原稿の書き方(和文表題:Gothic 14pt) MS-Word の場合(和文副題:Gothic 12pt)
Guide for the manuscripts (英文表題: Times New Roman 12pt)
The case of MS-Word (英文副題: Times New Roman 12pt) (1 行あける)
伝正 *伝熱 太郎 (伝熱大) (会員資格 著者名[講演者には*印] (所属 略称): 明朝休 12nt)
(1 行あける) Tara DENNETSU (英文英字名, Times New Borrow 10rt)
Dept. of Mech. Eng., Dennetsu Univ., 5-1-5, Kashiwanoha, Kashiwa, 277-8563 (1 行あける)
(文頭に半角スペース 5 つを挿入する)English abstract (英文アブストラクト: Times New Roman 10pt, 100 語程度)
(1 行あける) Key Words: Heat Transfer (英文キーワード: Times New Roman 10pt, 3~5 個程度) (1 行あける)
1. 大見出し 1.1 中見出し 講演論文原稿は A4 サイズで原則 2~6 ページです. 講演論文の作成様式は,1 段組×50 字 ×46 行とし,カラーの使用が可能です.ファイル容量は最大で 2MB までとし,アニメーションは含まな いものとします.

① 講演論文の冒頭部分(表題部分および本文書き出し部分)の書式

140 mm

✓ → → → → → → → → → → → → → → → → → → →
原稿の書き方(和文表題:Gothic 14pt) MS-Word の場合(和文副題:Gothic 12pt) Cuida for the manuscripte (英文書題:Times New Roman 12pt)
The case of MS-Word (英文副題: Times New Roman 12pt)
伝正 *伝熱 太郎 (伝熱大) (会員資格 著者名[講演者には*印] (所属 略称): 明朝休 12nt)
暗小小・5月4月4712pt) (1 行あける) Taro DENNETSU (英文英考名:Times New Roman 10nt)
Dept. of Mech. Eng., Dennetsu Univ., 5-1-5, Kashiwanoha, Kashiwa, 277-8563 (1 行あける)
Key Words: Heat Transfer (英文キーワード: Times New Roman 10pt, 3~5 個程度) (1 行あける)
講演アブストラクト原稿はA4 サイズで1ページです.講演論文の作成様式は、1段組×50字×46行 とし、原則として章で分ける必要はありません.カラーの使用が可能です.ファイルの容量は最大で2MB とし、アニメーションは含まないものとします.

② 講演アブストラクトの冒頭部分(表題部分および本文書き出し部分)の書式

他の学術雑誌等との二重投稿にならないように十分に配慮して下さい. 参考文献: 参考文献は本文中の引用箇所の右肩に小括弧をつけた番号(1)で表し, 本文の末尾に次のように ま とめて列記してください.

(番号) 著者名, 雑誌略称, 巻-号(発行年), 先頭ページ番号. 例:(1) 伝熱·他2名, 機論(B), 12-345(2006), 1234.

③ Full Size Manuscript

As shown in the square enclosure below, the manuscript is composed of a title, a subtitle, author names, affiliation institutions, locations, abstract and keywords in order, lay out so that it fits within the width of 140 mm. If there are multiple authors, please mark * in front of the speaker and distinguish the affiliation institution and address with superscripted numbers. Following the title part, please prepare the body as a guide with a single column of 10 point Times New Roman, 46 lines per one page. Color display is possible. References should be indicated by numbers with brackets (1) on the right shoulder of cited parts in the text, and should be listed together at the end of the text as follows.

Example: (1) T. Dennetsu et al, J. Thermal Sci. Technol., 12-345(2018), 1234.

The template file of MS-Word format can be downloaded from the symposium's website.

(4) Abstract Manuscript

As shown in the square enclosure below, the manuscript is composed of a title, a subtitle, author names, affiliation institutions, locations and keywords in order, lay out so that it fits within the width of 140 mm. If there are multiple authors, please mark * in front of the speaker and distinguish the affiliation institution and address with superscripted numbers. Following the title part, please prepare the abstract as a guide with a single column of 10 point Times New Roman, 46 lines per one page. Color display is possible. References should be indicated by numbers with brackets (1) on the right shoulder of cited parts in the text, and should be listed together at the end of the text as follows.

Example: (1) T. Dennetsu et al, J. Thermal Sci. Technol., 12-345(2018), 1234.

The template file of MS-Word format can be downloaded from the symposium's website.

1. Headline

of A4 size. The manuscript forms 1 column × 46 lines, and color can be used. The file size is limited to 2MB at the maximum, and animations cannot be included.

③ Format of English full size manuscript (title part and text export part).

お知	6	せ
40/10	~	_

← 140 mm →
Guide for the manuscripts (Main title: Times New Roman 14pt)
The case of MS-Word (Subtitle: Times New Roman 12pt)
(blank line)
Taro DENNETSU (Authors: Times New Roman 12pt, Mark "" at the head of
speaker's name)
(blank line)
Dept. of Mech. Eng., Dennetsu Univ., 5-1-5, Kashiwanoha, Kashiwa, 277-8563 (Affiliations:
Times New Roman 10pt)
(blank line)
Key Words: Heat Transfer (Keywords: Times New Roman 10pt, 3 to 5 words)
(blank line)
The manuscript is provided only with an electronic manuscript. The manuscript needs 1 page of A4 size. Chapters
are not necessary. The manuscript forms 1 column × 46 lines, and color can be used. The file size is limited to 2MB at

the maximum, and animations cannot be included.

④ Format of English abstract manuscript (title part and text export part).

【ご注意】

- 講演申込みの取消および講演論文原稿の差し替えは、シンポジウムの準備と運営に支障をきたしますの でご遠慮下さい.
- 講演申込みは共著者の許可を得てから行って下さい.
- 論文題目と著者名が,講演申込み時と論文提出時で相違しないように特にご注意下さい.
- ロ頭発表用として実行委員会事務局が準備する機器は、原則としてプロジェクタのみとさせていただき ます. パーソナルコンピュータは各自ご持参下さい.
- 参加費,意見交換会費等は参加取消の場合でも返金いたしません.
- 本シンポジウムに関する最新情報については、随時更新するホームページでご確認下さい.
- その他、ご不明な点がありましたら、実行委員会事務局まで Email または FAX でお問い合わせ下さい.

【お問い合わせ先】

第 57 回日本伝熱シンポジウム実行委員会事務局 金沢大学 理工研究域 機械工学系内 E-mail:symp2020@htsj-conf.org, FAX:076-234-4743 ホームページ URL: https://htsj-conf.org/symp2020/

優秀プレゼンテーション賞(第57回日本伝熱シンポジウム)について

日本伝熱学会 学生会委員会 委員長 巽 和也

第57回日本伝熱シンポジウムでは、下記の要領で、若手研究者および学生を対象とした優秀プレゼンテーション賞セッションを設けます.日頃の研鑽の成果を披露するチャンスとして、奮ってご応募下さい.

- 開催日: 令和2年6月3日(水) シンポジウム第1日
- 発表形式:発表者1名あたり,発表内容をまとめた1枚のアピールスライド提出とポスタープレゼン テーションを行う形式をとる予定です.アピールスライドは冊子体として配布されると共 にスライドショーとして会場にて案内される予定です.詳細については,決定し次第,シ ンポジウムのホームページに掲載いたします.
- 対 象: 企業・大学・研究機関等の技術者・研究者で, 令和2年3月31日現在で28歳以下の方, または, 申込当日に学生である方.
- 応募資格:発表者は日本伝熱学会の会員(正員・学生員)に限ります.発表者が日本伝熱学会会員で ない場合は,講演論文原稿提出までに,会員申し込みを行ってください.<u>なお,本セッシ</u> <u>ョンで発表する方は,応募資格を必ず満たす必要があります.また,過去に本賞を受賞さ</u> れた方は応募することはできません.
- 応募件数:大学に所属する学生の場合:指導教員あたり1名(1件) 大学以外の研究機関,企業に所属する場合:研究グループあたり1名(1件) とします.
- 応募方法:第57回日本伝熱シンポジウム発表申込時に、本誌掲載の研究発表申込方法に従って、"優 秀プレゼンテーション賞"を選択し、"指導教員または研究グループ長等"を入力してく ださい.なお、講演論文原稿の様式については一般セッションと同様のものとします.
- 審査・選考方法: 複数名の審査員による評価に基づいて選考し,受賞者を決定します.
- 表 彰: 受賞者はシンポジウム第2日の学会総会で表彰されます.

編集出版部会からのお知らせ 一各種行事・広告などの掲載について一

インターネットの普及により情報発信・交換能力の比類ない進展がもたらされました.一方,ハー ドコピーとしての学会誌には、アーカイブ的な価値のある内容を手にとって熟読できる点や、一連の ページを眺めて全貌が容易に理解できる点など、いくら電子媒体が発達してもかなわない長所がある のではないかと思います.ただし、学会誌の印刷・発送には多額の経費も伴いますので、当部会では このほど、密度のより高い誌面、すなわちハードコピーとしてぜひとも残すべき内容を厳選し、イン ターネット(HP:ホームページ,ML:メーリングリスト)で扱う情報との棲み分けをした編集方針 を検討いたしました.

この結果,これまで会告ページで取り扱ってきた各種行事・広告などの掲載につき,以下のような 方針で対応させていただきたく,ご理解とご協力をお願いする次第です.

対象	対応	具体的な手続き (電子メールでの連絡を前提としています)
本会(支部)主 催による行事	無条件で詳細を,会誌と HPに掲載,MLでも配信	申込者は,記事を総務担当副会長補佐協議員(ML担当),広報委員会委員長(HP担当)あるいは編集出版部会長(会誌担当)へ送信してください.
関係学会や本会 会員が関係する 組織による 国内外の会議・ シンポジウム・ セミナー	条件付き掲載 会誌:1件当たり4分の1ペ ージ程度で掲載(無料) HP:行事カレンダーに掲載 しリンク形成(無料) ML:条件付き配信(無料)	申込者は,まず内容を説明する資料を総務担当副会長補佐 協議員に送信してください.審議の結果,掲載可となった 場合には総務担当副会長補佐協議員より申込者にその旨通 知しますので,申込者は記事を編集出版部会長(会誌担 当)と広報委員会委員長(HP担当)に送信してください.
大学や公的研 究機関の人事 公募(伝熱に 関係のある分 野に限る)	会誌:掲載せず HP:条件付き掲載 (無料) ML:条件付き配信 (無料)	申込者は、公募内容を説明する資料を総務担当副会長補佐 協議員に送信してください、審議の結果、掲載可となった 場合には総務担当副会長補佐協議員より申込者にその旨通 知しますので、申込者は記事を広報委員会委員長(HP 担 当)に送信してください.
一般広告 求人広告	会誌:条件付き掲載(有料) HP:条件付き掲載 (バナー広告のみ,有料)	申込者は,編集出版部会長(会誌担当)または広報委員会 委員長(HPバナー広告担当)に広告内容を送信してくださ い.掲載可となった場合には編集出版部会長または広報委 員会委員長より申込者にその旨通知しますので,申込者は 原稿を編集出版部会長または広報委員会委員長に送信して ください.掲載料支払い手続きについては事務局からご連 絡いたします.バナー広告の取り扱いについては http://www.htsj.or.jp/wp/media/36banner.pdfをご参照下さい.

【連絡先】

- ・総務部会長:村田 章 (東京農工大学): murata@mmlab.mech.tuat.ac.jp
- ・編集出版部会長:中村 元(防衛大学校):nhajime@nda.ac.jp
- ・広報委員会委員長:畠山友行(富山県立大学):hatake@pu-toyama.ac.jp
- ・総務担当副会長補佐協議員:村上陽一(東京工業大学):general-affairs@htsj.or.jp
- ・事務局:大澤毅士・村松佳子・山田麻子:office@htsj.or.jp
- 【注意】
- ・原稿はWordファイルまたはTextファイルでお願いします.
- ・HPはメンテナンスの都合上,掲載は申込月の翌月,また削除も希望掲載期限の翌月程度の時間遅 れがあることをご了承願います.
- ・MLでは、原則としてテキスト文の送信となります.pdf等の添付ファイルで送信を希望される場合 はご相談ください.

2 センサテクノス株式会社

〒106-0031 東京都港区西麻布3-24-17 霞ビル4F TEL: 03-5785-2424 FAX: 03-5785-2323

URL www.senstech.jp E-ma

E-mail info@senstech.jp

当社は、独自の高度技術を持つ、海外メーカーの熱計測機器をご提供致しております。

CAPTEC 社(フランス)

CAPTEC(キャプテック)社は、独自の高度技術により、低熱抵抗で高感度な熱流束センサーを開発・製造致しております。環境温度が変化して も感度は常に一定で、熱流束値に比例した電圧を高精度に出力します。

輻射センサーは,輻射熱のみを計測する画期的なセンサーです。特注形状も承っております。

熱流束センサー

AL CAL

サイズ:5×5mm~300×300mm 厚み:0.4mm(平面用・曲面用) 温度範囲:-200~200℃ 応答速度:約200ms オプション:温度計測用熱電対内蔵 形状:正方形・長方形・円形 特注品:高温用・高圧用・防水加工

輻射センサー

サイズ: 5×5mm~50×50mm 厚み: 0.25mm 温度範囲: - 200~250℃ 応答速度:約50ms オプション:温度計測用熱電対内蔵 形状:正方形・長方形・円形 波長領域:赤外/可視+赤外

MEDTHERM 社(アメリカ)

MEDTHERM(メドサーム)社は、これまで30年以上にわたり、高品質の熱流計及び超高速応答の熱電対を提供してまいりました。 航空宇宙・火災・燃焼分野における豊富な実績を有しています。用途に応じ、様々な形状・仕様の製品を製造可能です。

熱流束範囲: 0.2-4000Btu/ft²sec(フルスケール) サイズ: 1/16 インチ(約 1.6mm)〜1 インチ(約 25.4mm) 最高温度: 200℃(水冷なし)/1500℃(水冷) 出力信号: 0-10mV(DC・線形出力) 直線性: ±2%(フルスケールに対して)

応答速度: 50ms 以下* 再現性: ±0.5% 較正精度: ±2% オプション: 輻射窓・視野角指定等 *応答速度は、熱流束レンジによって異なります。

超高速応答同軸熱電対

熱流計/輻射計

本同軸型熱電対は, 第1熱電対のチューブの中に第2熱電対ワイヤーが挿入された同軸構造になっています。 第2熱電対ワイヤーは, 厚み 0.0005 インチ(約 0.013mm)の特殊なセラミックで絶縁コーティングされています。 プローブ先端の熱電対接点は, 厚み 1〜2 ミクロンの金属皮膜で真空蒸着されており, 最高1マイクロ秒の応答速度を実現しています。

【主な用途】 表面温度及び表面熱流束計測 風洞試験・エンジンシリンダー・エアコンプレッサー等

【最小プローブ径】 0.015 インチ(約 0.39mm) 【熱電対タイプ】 【温度範囲】 T型(銅/コンスタンタン) - 270℃〜+400℃ J型(鉄/コンスタンタン) - 210℃〜+1200℃ E型(クロメル/コンスタンタン) - 270℃〜+1000℃ K型(クロメル/アルメル) - 270℃〜+1372℃ S型(白金10%ロジウム/白金) +200℃〜+1700℃

ITI 社(アメリカ)

ITI (International Thermal Instrument Company)社は、1969年の設立以来、高温用熱流板や火炎強度熱流計など、特殊な用途に対応 した製品を提供しています。特注品の設計・製造も承っております。

高温用熱流板

当社取扱製品の適用分野

■温熱環境

■火災

■伝熱一般
■航空宇宙

■各種エンジン

最高温度: 980℃ 応答速度: 0.1s 直径: 8mm~25.5mm 厚み: 2.5mm

■炉 ボイラー

■燃焼

水冷式 火炎強度熱流計

最高温度: 1900℃ 応答速度: 0.1s 最大熱流束レンジ: 0~3000W/cm²

有限会社 テクノオフィス

〒225-0011 神奈川県横浜市青葉区あざみ野 3-20-8-B TEL. 045-901-9861 FAX. 045-901-9522 URL: http://www.techno-office.com

本広告に掲載されている内容は2010年9月現在のもので、製品の仕様は予告なく変更される場合があります。
編集出版部会ノート

Note from the JHTSJ Editorial Board

本特集では「接触熱抵抗の評価と低減 —基礎研究と実用化の進展— (Evaluation and Reduction of Thermal Contact Resistance — Progress in Basic Research and Practical Application —)」をテーマに、6件のトピックス についてご寄稿いただきました.

富山県立大学の畠山友行氏と兵藤文紀氏には、電子機器における接触熱抵抗の予測と接触面での熱縮流の 影響についてご紹介いただきました.接触熱抵抗は電子機器の放熱における障害である一方で、電子機器を 設計する際の温度予測においても大きな障害となっています.数値解析などを用いて機器の温度を予測する 際、機器を構成する電子部品などの内部に関しては、熱伝導率などの物性値を入力することが可能ですが、 接触熱抵抗は部品同士の接触状態によって変化してしまうため、実際に機器で利用する際と同じ接触状態を 再現して計測するなど、なんらかの形で計測する必要が生じます.ここでは、接触熱抵抗の予測に関する検 討事例が示されています.

大阪府立大学の吉田篤正氏と加賀田翔氏には,非定常法による接触熱抵抗の測定と評価についてご紹介い ただきました.ここでは,低接触圧力下において,従来使用されている TIM を含め,高温・高熱流束下での 使用が期待される銀ペーストを採用した場合の接触熱抵抗低減効果を実験的に評価されています.特に,二 つの金属を接触させた試料に対して,接触圧力,接触面の表面粗さ,接触面への接触材挿入の有無をパラメ ータとした測定が行われ,光音響法による接触熱抵抗の評価が試みられています.

山口東京理科大学の木伏理沙子氏には、高熱流束環境下における TIM 及び接触圧力印加による接触熱抵抗 低減効果の検証についてご紹介いただきました.次世代パワー半導体を搭載した電子機器に適用される Thermal Interface Material (TIM) については、高い耐熱性が必要となるため、従来品とは異なる TIM を適用 することが必要になります.ここでは、低接触圧力下において、従来使用されている TIM を含め、高温・高 熱流束下での使用が期待される銀ペーストを採用した場合の接触熱抵抗低減効果が実験的に評価されています.

株式会社デンソーの篠田卓也氏と株式会社メイテックの安井龍太氏には、電子機器における接触熱抵抗の 低減技術についてご紹介いただきました.電子機器の筐体においては、複数の箇所をねじ締結することが一 般的であり、2 点以上のねじ間で発生するうねりを考慮した設計が必要となってきます.ここでは、必然的 に発生するねじ締結によるうねりを巧く利用し、筐体形状に工夫を凝らすことで接触熱抵抗を低減する能動 的な手法について検証されています.

KOA 株式会社の青木洋稔には、圧力測定フィルムを利用した接触熱抵抗の評価方法についてご紹介いただ きました.接触熱抵抗については、接触面に放熱グリースなどの Thermal Interface Material (TIM)を塗布す ることで、通常その値の低減が図られますが、コスト削減やグリースの経年劣化などの理由から放熱グリー スを使わない設計の要望も出てきています.このグリースレス接触における熱抵抗は、部材の表面粗さやう ねり、接触圧力などの影響を受けるため、その定量化は難しく、熱設計を行う際の課題になっています.こ こでは、グリースレス接触面の熱抵抗を定量化するために、圧力測定フィルムを利用した新しい評価手法の 開発が試みられています.

金沢工業大学の福江高志氏には、感熱印刷プロセスに影響する接触熱抵抗の評価についてご紹介いただき ました.接触熱抵抗が使用者の満足度に直接的に影響するアプリケーションの事例として、感熱印刷(Direct Thermal Printing: DTP)があります.ここでは、特に感熱印刷において発生する接触熱抵抗の影響度を、構想 設計段階において機能レベルで評価・判断できる設計指標の獲得を目指した研究事例が示されています. 以上,これらの6件のトピックスを通じて,我が国における最新の接触熱抵抗の評価と低減に関する基礎 研究と実用化の進展が読者の皆様に味わっていただけるのではないかと思います.ご多忙のなか,ご寄稿い ただきました執筆者の皆様に厚くお礼申し上げます.

> 富村 寿夫 (元熊本大学) Toshio TOMIMURA (Ex Kumamoto University) e-mail: tomi.sapporo65@gmail.com

- 企画·編集出版担当副会長 須賀 一彦 (大阪府立大学)
- 編集出版部会長 中村 元(防衛大学校)

委員

(理事) 佐々木 直栄 (日本大学), 戸谷 剛 (北海道大学), 光武 雄一 (佐賀大学)

(協議員) 梶田 欣(名古屋市工業研究所),後藤田 浩(東京理科大学),富村 寿夫(元熊本大学), 西 剛伺(足利大学),二宮 尚(宇都宮大学),元祐 昌廣(東京理科大学),

結城 和久 (山口東京理科大学)

TSE チーフエディター	花村 克悟(東京工業大学)
TSE 編集幹事	伏信 一慶(東京工業大学)
編集出版部会 連絡先:	〒239-8686 横須賀市走水 1-10-20
	防衛大学校 システム工学群 機械工学科
	中村 元
	Phone: 046-841-3810 内線 3419, Fax: 046-844-5900
	E-mail: nhajime@nda.ac.jp