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Abstract 

This paper attempts to study numerically a differentially heated square cavity, which is formed by horizontal 

adiabatic walls and vertical isothermal walls. Two perfectly insulated baffles were attached to its horizontal walls at 

symmetric position. Heat transfer by natural convection of dry air was studied by solving mass, momentum and energy 

equations numerically. Streamlines and isotherms are produced and heat transfer is calculated. A parametric study is 

carried out using following parameters: Rayleigh number from 10
4
 to 10

8
, non-dimensional thin baffles length are 0.6, 

0.7, and 0.8, non-dimensional baffle positions Sb from 0.2 to 0.8. It was observed that the two baffles trap some fluid in 

the cavity and affect the flow fields. The flow for cavities with Sb <0.5 at low Ra tends to circulate as a primary vortex 

strangled by the baffles while at high Ra it tends to separate into two different vortexes. For the cavities with Sb >0.5 it 

tends to separate into two different vortexes at low Ra while at high Ra tends to circulate as a primary vortex strangled 

by the baffles. It is found that Nusselt number is an increasing function of Ra, a decreasing one of baffle length, and 

strongly depends on Sb. Another interesting phenomenon of the typical cavity is that a particular case is the opposite of 

the other case as long as the sum of Sb is equal to 1. Thus, the typical cavity can allow the heat flow in one direction but 

significantly blocks it in the opposite direction. The typical cavity can be proposed as a heat version of a diode. The heat 

may be transferred up to 42% from one direction but blocked up to 98% in the opposite direction by using a particular 

cavity with Lb =0.7 and Sb=0.4 at Ra=10
8
. 
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Nomenclature 

g : Gravitational acceleration  [m/s
2
] 

H : Cavity height [m] 

k : Thermal conductivity [W/(m⋅K)] 
K : Heat flow coefficient defined in Eq. (3) 

l : Baffle length [m] 

L : Non-dimensional baffle length, Hl=  

Nu : Nusselt number defined in Eq. (10) 

p : Pressure [Pa] 

P : Non-dimensional pressure  

Pr : Prandtl number, αυ=   

Ra : Rayleigh number, ανβ 3H)TT(g
ch

−=  

s : Baffle position [m] 

S : Non-dimensional baffle position, Hs=  

T : Temperature [K] 

U,V : Non-dimensional velocities  

α : Thermal diffusivity  [m
2
/s] 

β : Coefficient of thermal expansion [K
-1
] 

θ : Non-dimensional temperature  

υ : Kinematic viscosity [m
2
/s] 

ρ : Density [kg/m
3
] 

ψ : Stream function  

    

Sub/Superscripts 

: related to baffle   b 

c : related to cold surface  

h : related to hot surface  

l : related to left vertical wall  

r : related to right vertical wall  

- : average  

    

1 Introduction  

 

Natural convection in an air filled cavity with 

vertical walls that are heated and cooled while its 

horizontal walls are adiabatic has received a great 

consideration because many of the industrial applications 
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employ this concept as a prototype. Noticeable examples 

include heating and ventilating of rooms, solar collector 

systems, electronic cooling devices, and cooling of 

nuclear reactors. In many applications, for some reasons, 

the cavity is partitioned by attaching baffle(s) to its 

vertical and (or) to its horizontal wall(s). Recently, 

studies of heat transfer and fluid flow characteristics of 

the partitioned cavity has come under scrutiny both 

numerically and experimentally [1-17]. Based on the 

baffle(s) position, the published works can be segregated 

into two groups. The baffle(s) are attached to the vertical 

wall(s) [1-11] and the baffle(s) are attached to the 

horizontal wall(s) [12-17] of the cavity. Since this paper 

considers a square cavity with a baffle attached to each 

of its horizontal walls, only the typical problems will be 

briefly reviewed.   

The cavity with baffle(s) attached to its horizontal 

walls received less attention than the cavity with 

baffle(s) attached to its vertical wall(s). After an 

extensive literature study, we have found three 

publications about this particular cavity. Bajorek and 

Llyod [14] studied experimentally a differentially heated 

air filled square partitioned cavity for Rayleigh 

numbers 65 1016.21025.1 ×−× . The insulated baffle is 

attached to the horizontal walls at positions in the middle. 

Non-dimensional baffle length is 0.25. The effect of the 

baffle positions was not considered. It was found that the 

baffles significantly influence the heat transfer rate and 

the average Nusselt numbers reduced to approximately 

15 % compared to the non-partitioned cavity. 

Observations of the interferometric fringes indicated that 

the core region is unsteady beginning at Rayleigh 

numbers 5105.3 × . Jetli et al. [15] studied numerically a 

differentially heated air filled square partitioned cavity 

for Rayleigh numbers 54 1055.310 ×− with three different 

combinations of the baffle positions. The first case, the 

bottom baffle is on the hot side and the top baffle is on 

the cold side, the second case both baffles are in the 

middle, and the third case the bottom baffle is on the 

cold side and the top baffle is on the hot side. 

Non-dimensional baffles length is fixed at 0.33. The 

results clearly demonstrate that the baffles positions have 

a significant effect on the heat transfer and flow 

characteristics of the fluid. For all baffles locations, the 

average Nusselt number is smaller than the 

corresponding value in a cavity without baffle.  

Recently, Bilgen [16] studied numerically the 

differentially heated air filled partitioned shallow cavity 

(aspect ratio 0.3 to 0.4) for Rayleigh number from 10
4
 to 

10
11
. Non-dimensional baffle length was varied from 0 to 

0.15. The baffle position was varied in the middle or 

slightly farther away from the heated side 

(non-dimensional positions are 0.5-0.6) and its 

conductivity is 20 relative to the air conductivity (for 

usual construction materials). It was found that the flow 

regime was laminar for Rayleigh numbers up to 10
8
 

thereafter turbulent. The heat transfer was reduced when 

two baffles were used instead of one, aspect ratio was 

made smaller, and positions of the baffles were farther 

away from the hot wall. 

The literature review cited above shows that the 

study of a partitioned cavity with non-dimensional 

baffle’s length more than 0.5 have not been reported. It 

was reported that the length of the baffle strongly affects 

the heat transfer and flow characteristics in the cavity but 

no trapped fluid phenomenon was captured.  

In this paper we present a numerical study of natural 

convection in an air filled partitioned square cavity. The 

cavity was differentially heated and to its top and its 

bottom walls a baffle was attached. The baffles are thin, 

perfectly insulated and non-dimensional length of more 

than 0.5 in order to capture the trapped fluid. The 

positions of the top baffle from the right wall and the 

bottom baffle from the left wall are the same, so the 

configuration of the baffles in the cavity is always 

symmetrical. The literature review shows that this 

problem has not been addressed [22]. The objective of 

this paper is to make clear the effects of the long baffles 

on the flow and temperature fields and on the heat 

transfer characteristics of the cavity. The result can be 

expected from this paper is to show that the cavity with 

baffles are attached to its horizontal walls can be 

proposed as a heat version of diode which allows the 

heat to flow in one direction but significantly blocks it in 

the opposite direction. 

 

2 Problem Definition 

 

The typical cavity with the boundaries and its 

coordinates system are depicted in Figure 1. In this study 

only the square cavity is considered, its height and width 

are denoted by H . The cavity is differentially heated, left 

and right walls are isothermal at hT  and cT  

respectively ( )ch TT >  and horizontal walls are adiabatic. 

Two thin baffles with non-dimensional length bL , 

perfectly insulated, were attached to the top and the 

bottom wall. The non-dimensional position of the bottom 

baffle from the left wall and top baffle from the right 

wall are the same and denoted by bS . 

The flow is assumed to be two-dimensional and in 

steady state condition. The compressibility, radiation 

heat exchange, and dissipations are negligible. All of the 

thermal properties are constant, except density in the 

buoyancy force. Boussinesq approximation is used to 

model the buoyancy force. The governing equations 

are converted into the non-dimensional form by defining 

the non-dimensional variables. 
 

H

x
X = , 

H

y
Y = , 

α
uH

U = , 
α
vH

V = , 
2

2

ρα
pH

P = , 

ch

c

TT

TT

−

−
=θ                           (1) 

The pressure p in the above equation is the reduced 

pressure which is defined as local pressure subtracted by 

hydrostatic pressure. Based on these non-dimensional  
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Fig. 1 Schematic of the square cavity with thin insulated  

baffles attached to the horizontal walls 

 

variables, the governing equations are obtained as 

follows. 
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The boundary conditions are: 

On the left wall:  10 === θ,VU               (6) 

On the right wall: 00 === θ,VU               (7) 

On the top and bottom walls: 00 =
∂

∂
==

Y
,VU

θ
    (8) 

On the baffles: 0== VU                       (9) 

In order to compare total heat transfer rate, Nusselt 

number is used. The local and average Nusselt numbers 

are defined as follows. 

( )ch

X
y

X
Nu

θθ

θ

−

∂∂
−= =0                        (10) 

∫=
1

0

dYNuuN
y

                           (11) 

The comparison parameter for flow characteristic is 

represented by the stream function, and defined as 

follow. 

Y
U

∂

∂
−=

ψ
, 

X
V

∂
∂

=
ψ

                      (12) 

 

3 Numerical Procedure 

 

All of the governing equations were transformed 

into sets of algebraic equations based on the finite 

volume method. The staggered grid system was used. In 

order to handle convective and diffusion terms the power 

law scheme was employed. The sets of algebraic 

equations were solved by using the line by line method 

which is combined with the Thomas algorithm. The 

SIMPLE algorithm [21] was used to couple the velocity, 

pressure, and temperature fields.  

In the SIMPLE algorithm under-relaxation factor is 

an essential problem and there is no special rule in 

determining the proper under-relaxation factor. A large 

under-relaxation factor, especially for momentum 

equations, will lead the calculation into divergence 

however a very small under-relaxation factor leads to a 

lengthy calculation. After some calculations, employing 

an under-relaxation factor larger than 0.2 for momentum 

equations (especially for cases Ra higher then 10
6
) will 

not reach the convergence. In order to get the 

convergence for all problems, the small under-relaxation 

factors were employed. Considering both computational 

cost and convergence the under-relaxation factor for 

momentum equations is 0.01, for pressure it is 0.2, and 

for temperature it is 0.8. Based on this procedure the 

FORTRAN codes to solve all of the governing equations 

have been developed. 

 

3.1 Grid Independence Test 

In this study, non-uniform grid spacing was 

employed. However near the walls and the baffles even 

smaller grid spacing was used. In order to determine the 

proper grid numbers due to accuracy and computational 

time, a grid independence test was conducted for a 

particular case. Four different grid sizes were tested in 

the case where Lb=0.6 and Sb=0.3. uN and the maximum 

absolute stream function are used as the sensitivity 

measure of the accuracy of the solution, the results are 

presented in Table 1.  

 

Table 1 Comparison parameters for grid sensitive test 
 

Grid 

numbers 
uN  

max
ψ  uN∆  

(%) 
max

ψ∆  

(%) 

6060×  0.7543 8.51 7.75 1.88 

8080×  0.8128 8.67 3.81 0.91 

100100×  0.8438 8.749 1.11 0.39 

120120×  0.8532 8.783 - - 

 

Comparison of the both parameters values among 

four different cases suggest that two grids sizes 100100×   

and 120120× give nearly the same results (deviation less 

than 1.5 %). Considering both the accuracy and the 

computational time, the 100100×  grid size was 

employed for all calculations. 

 © 2006 The Heat Transfer Society of Japan 
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3.2 Validation of the Code 

In order to make sure that the developed codes are 

free of error coding, a validation test was conducted. 

Calculations for an air filled square cavity without baffle 

for Ra=10
4
 to 10

8
 were carried out and the results are 

shown in Table 2. The results of the previous 

publications for the same problem are also presented in 

the table. Data from the table shows that the results of 

the code, even though there are some differences, do 

agree very well with the previous works results. Those 

differences are not essential, the maximum difference is 

1.7 %, and probably caused by the different grids sizes 

and round-offs in the computational process. Based on 

this successful validation, the problem is solved by using 

the code. 

   

Table 2 Comparison of the present result and the  

previous works result 

 

Average Nusselt numbers, uN  Reference 

Ra=104 Ra=105 Ra=106 Ra=107 Ra=108 

Davish[18] 2.234 4.51 8.798 - - 

Hortmann

[19] 

2.4468 5.5231 8.8359 - - 

Saitoh[20] 2.2415 - 8.7126 - - 

Collins[3] 2.244 4.5236 8.8554 - - 

Nag[2] 2.24 4.51 8.82 - - 

Shi[1] 2.247 4.532 8.893 16.935 - 

Bilgen[7] 2.245 4.521 8.8 16.629 31.520 

Present 2.228 4.514 8.804 16.52 30.48 

 

Flow and temperature fields for the square cavity 

without baffle are presented in Fig. 2 for reference. Fig. 

2(a) shows the isotherms. As natural convection 

strengthened, temperature contours show slight deviation 

from the pure conduction case with the isotherms 

becoming skewed. Under high Rayleigh numbers 

conditions, the degree of distortion from the pure 

conduction case is very marked and the contour lines 

become almost horizontal lines around the center of the 

cavity. Fig. 2(b) shows the streamlines. The rise of the 

fluid due to heating on the left wall and consequent 

falling of the fluid on the right wall creates a clockwise 

rotating vortex, referred to as the primary vortex.  

Another feature of these streamline patterns is that 

the streamlines become more packed next to the side 

wall as the Rayleigh number increases. This suggests that 

the flow moves faster as natural convection is intensified. 

The maximum absolute value of the stream function in 

the cavity is also shown in Fig. 2. Therefore, the 

maximum absolute value of the stream function can be 

viewed as a measure of the intensity of natural 

convection in the cavity. As the Rayleigh number 

increases the maximum absolute value of the stream 

function increases. This means the intensity of natural 

convection in the cavity increases as the Rayleigh 

number increases. 
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Fig. 2 Isotherms (a) and streamlines (b) of natural 

      convection in a square cavity without baffle 
 

4 Results and Discussion 
 

In order to understand the flow and temperature 

fields and heat transfer characteristics of the typical 

cavity a total of 90 cases were considered. To study the 

effects of the baffle position, the non-dimensional baffle 

positions Sb= 0.2, 0.3, 0.4, 0.6, 0.7, and 0.8 were 

considered. To study the effects of baffle length, the 

non-dimensional baffle lengths Lb=0.6, 0.7, and 0.8 were 

considered. The fluid inside the cavity is dry air with Pr 

= 0.7 and Rayleigh number varied from 10
4
 to 10

8
. Flow 

and temperature fields and Nusselt number are 

examined.  
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4.1 Flow and Temperature Fields 

Flow fields for the typical cases with non- 

dimensional baffle length 6.0=bL  are presented in Fig. 3. 

The plots are arranged going from left to right with the 

ascending of Rayleigh numbers and from top to bottom 

with the ascending of Sb values. The maximum value of 

the absolute stream function for each case is also 

presented in the figure. We note that for all Ra the 

appearance of the flow fields and maximum value of the 

absolute stream function in all cases is totally different to 

the square cavity without baffle. This is already expected 

because the presence of the two baffles with Lb more than 

0.5 inside the cavity totally modifies the flow field 

patterns. A glance at Fig. 3 shows that the flow fields can 

be divided into two different patterns. The first pattern is 

the fluid circulates and creates a large clockwise primary 

vortex strangled by the baffles. The second pattern is the 

fluid separated into two different vortexes. The two 

baffles create fluid trapping phenomena in the cavity. 

The first row of Fig. 3 is the flow fields for the case 

when 2.0=bS . Since 5.0<bS , the bottom baffle is on the 

hot side and the top baffle is on the cold side of the 

cavity. At a low Rayleigh number Ra=10
4
 there are two 

trapped fluids in the cavity, hot trapped fluid and cold 

trapped fluid. The hot trapped fluid exists between the 

bottom baffle and the hot wall and the cold trapped fluid 

between the top baffle and cold wall. This is because at 

Ra=10
4
 natural convection is too weak to make the 

trapped fluids moving and also the space of the trapped 

fluids is limited due to a small
b

S .  

The natural convection creates a primary vortex 

strangled by these two trapped fluids. For Ra=10
5
 as 

intensity of natural convection increases, some of the 

trapped fluids are flowing and the primary vortex starts 

dividing into two vortexes. For Ra=10
6
 natural 

convection is strong enough to make all of the trapped 

fluids flowing.  

In order to satisfy the continuity, the circulation on 

the hot side is separated from the circulation on the cold 

side. The primary vortex has been divided into two 

different vortexes, cold vortex and hot vortex. These two 

vortexes are separated by one trapped fluid which is 

stagnant between the two baffles. For cases with Ra=10
7
 

and Ra=10
8
 the trapped fluid can be seen clearly. This is 

because the vortex on each side becomes more vigorous 

showed by the more packed streamlines.    

The second row of Fig. 3 is the flow fields when 

Sb=0.3. The figure shows that even for a low Rayleigh 

number Ra=10
4
 the primary vortex starts dividing into 

two vortexes. When Ra=10
5
 is reached the primary 

vortex has been divided into two different vortexes. This 

is because the space between each baffle and the nearest 

vertical wall is larger compared to the corresponding 

cases when Sb=0.2. For Rayleigh numbers higher than 

10
5
 each vortex becomes more vigorous and the trapped 

fluid between the two baffles can be seen clearly. The 

effects of the bS value can be seen clearly by observing 

the case with Sb=0.4. In this case even for a low Rayleigh 

number Ra=10
4 
the primary vortex has been divided into 

two separated vortexes. This is because the spaces 

between each baffle and the nearest vertical wall are 

larger than the latter cases. 

The forth row until the sixth row of the Fig. 3 are the 

cases when 5.0>bS . In these cases the bottom baffle is 

on the cold side and the top baffle is on the hot side of 

the cavity. The flow fields for case with 6.0=bS are 

shown in the forth line of the figure. At Ra=10
4
 and 

Ra=10
5
 there are two vortexes in the cavity and a trapped 

fluid exists between the two baffles. This is because at 

the low Ra, the strength of the flowing fluids is not 

strong enough to penetrate the stagnant fluid between the 

two baffles. Since the spaces between each baffle and the 

nearest vertical wall are wide enough for the flowing 

fluid the circulations in both sides, cold side and hot side, 

are not mixed. 

 For Ra=10
6
 the fluid moves faster as the Rayleigh 

number increases, the two vortexes penetrate the 

stagnant fluid then merge to become a primary vortex. 

The natural convection can not move all of the fluid in 

the entire cavity and some of the fluids are trapped in the 

hot side and the cold side. The hot trapped exists 

between the top baffle and the hot wall. While the cold 

trapped fluid exists between the bottom baffle and the 

cold wall. The primary vortex circulates in a single cell 

strangled by these two trapped fluids. 

 At higher Rayleigh numbers Ra=10
7
 and Ra=10

8
 

the fluid moves faster, indicated by the contour of the 

stream line more packed, and make the trapped fluids 

more clear. The fifth and sixth rows of the Fig. 3 are flow 

field for cases with 7.0=bS and 8.0=bS respectively. 

The figure shows that even for Ra=10
4
 the flow field has 

become a primary vortex strangled by two trapped fluids. 

This is because the space of each trapped fluid is smaller 

compared to the case with 6.0=bS .  

Similar observations were made (not shown) for 

cases with 7.0=bL and 8.0=bL . In these cases the flow 

fields show the same pattern with the corresponding case 

with 6.0=bL .  

Temperature fields when 6.0=bL are presented in 

Fig. 4. The plots are arranged going from left to right 

with the ascending of the Rayleigh number and from top 

to bottom with the ascending of the bS value. The 

contour level increments for each case are kept constant 

at 0.1. Indeed in comparison to the square cavity without 

baffles the appearance of the temperature fields is 

strongly modified due to the presence of the two 

insulated baffles. 

The first row of Fig. 4 is for 2.0=bS . At Ra=10
4
 

when the natural convection is weak the isotherms take 

place only in the areas where the fluid moves. The 

isotherms show slight deviations from the pure 

conduction case with the contour lines becoming skewed. 

In the trapped fluid areas heat transfer is inactive due to 

presence of the insulated baffles and stagnant fluids. 

 © 2006 The Heat Transfer Society of Japan 
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Fig. 3 Streamlines for 6.0=bL : the first column: Ra=10
4
, second: Ra=10

5
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6
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7
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8
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= , second: 30.S
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Fig. 4 Temperature fields for 6.0=bL : the first column: Ra=10
4
, second: Ra=10

5
, third: Ra=10

6
, the fourth: Ra=10

7
,  

fifth: Ra=10
8
. The first row: 20.S

b
= , second: 30.S

b
= , third: 4.0=bS , fourth: 6.0=bS , fifth: 7.0=bS ,  

sixth: 8.0=bS
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At Ra=10
5
 the isotherms in the top left and bottom 

right of the cavity become more skewed but almost 

horizontal between the two baffles. This is because 

natural convection is more vigorous in the top left and 

bottom right of the cavity but becomes weak between the 

two baffles due to separation of the primary vortex. For 

Ra=10
6
, we note that the primary vortex has separated 

completely. Isotherms diminished on vortex areas but 

were more packed on the trapped fluid between the 

baffles. This is due to temperature difference on the 

vortex areas is small due to fluid circulation but it is 

high on the trapped fluid. For high Rayleigh numbers 

Ra=10
7
 and Ra=10

8
 the isotherms become more packed 

in the trapped fluid area but almost disappeared on the 

vortex areas. This is due to the vortexes becoming more 

vigorous and results in a very small temperature 

difference. The temperature difference on the vortex 

areas is only about 0.2 for Ra=10
7
 and is only about 0.1 

for Ra=10
8
. The trapped fluid blocks the convection heat 

transfer from the hot wall to the cold wall and 

conduction heat transfer is only considered.  The 

second row and the third row of Fig. 4 are the 

temperature fields for cases when baffle 

positions 3.0=bS and 4.0=bS . The figure shows that the 

appearance of the temperature fields of these cases is 

similar to the cases when 2.0=bS . 

The fourth row is for case when 6.0=bS . At Ra=10
4
 

where the flow is still separated into two vortexes and a 

trapped fluid exists between the two baffles  the 

isotherms are skewed on the vortex areas but almost 

horizontal in the trapped fluid area. At Ra=10
5
 the 

isotherms are more skewed in the vortex areas but less 

horizontal in the trapped fluid area since intensity of the 

natural convection increases. At Ra=10
6
 when the two 

vortexes have merged the isotherms are totally modified. 

The trapped fluids in the top left and bottom right of the 

cavity are inactive with respect to convective and 

conductive heat transfer due to the presence of stagnant 

fluid and insulated baffles, in Fig. 4 showed by the 

empty isotherms areas. These trapped fluids reduce the 

end-to-end heat transfer on the vertical walls. The 

isotherms show that the natural convection takes places 

only on uncovered area of the vertical walls. For higher 

Rayleigh numbers Ra=10
7
 and Ra=10

8
 natural 

convection becomes more vigorous and the fluid moves 

faster and the isotherms become more packed next to 

uncovered vertical walls. The fifth and the sixth rows of 

Fig. 4 are the temperature fields for cases when the baffle 

positions 7.0=bS and 8.0=bS . The figure shows that the 

appearance of the temperature fields of the latter cases 

are quite similar with the corresponding case 

when 6.0=bS . Similar observations were also made (not 

shown) for 7.0=bL and 8.0=bL , which show the 

similarity with the corresponding cases when 6.0=bL .  

 

4.2 Heat Transfer 

In order to evaluate how the presence of the two 

baffles affects the heat transfer rate through the cavity, 

the average Nusselt number will be discussed. The 

average Nusselt numbers for all cases as a function of 

Rayleigh number, Ra and for various parameters, 6.0=bL , 

7.0=bL , and 8.0=bL  are presented in Fig. 5, Fig. 6, and 

Fig. 7 respectively. In the figures uN  for the cavity 

without baffle is also presented by a dashed line as a 

reference. Generally, as expected uN  is an increasing 

function of Ra and a decreasing function of bL . The 

figures show that the appearance of the uN  lines for 

cases when 5.0<bS is totally different from 5.0>bS . 

Nusselt numbers for cases when 5.0<bS are lower than 

the cases when 50.S
b
>  especially at high Ra regions. 

This is because in these cases, the trapped fluid between 

the two baffles totally blocks the convective heat transfer. 

However for the cases with 5.0>bS , total heat transfer 

rate correlates with the natural convection on uncovered 

vertical walls. There is an exception, in the case when 

6.0=bS is different from the cases 

7.0=bS and 8.0=bS at low Ra regions. This is because in 

these regions the circulation is still separated by the 

trapped fluid.  
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Fig. 5 Nusselt number as a function of Ra for the case 

6.0=bL with
b

S as a parameter 

 

Fig. 5 shows the case with Lb=0.6. For 2.0=bS , 

uN is decreased by 80% at Ra=10
4
 and is 94.2% at 

Ra=10
8
, the average is 87.9%. At low Ra, the circulation 

is not perfectly separated and causes a relatively lower 

decrease compared to the higher Ra. For Sb=0.3, uN  is 

decreased by 83% at Ra=10
4
 and is 96% at Ra=10

8
, the 

average is 90.5%. These values suggest that the case with 

Sb=0.3 blocks the heat transfer rate more effectively than 

the case with Sb=0.2. Indeed since Sb < 0.5 uN  

correlates with conduction heat transfer through the 

trapped fluid. Thus uN is trapped fluid’s dimension 

dependent that increases as its width increases but 

decreases as its length increases. Moving the baffles 

from 2.0=bS  to 3.0=bS  will reduce the width of the 

trapped fluid from 0.6 to 0.4 and causes uN  to decreases. 

At a high Ra where the two vortexes are vigorous, 

related to small temperature difference on the vortex 
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areas, the ratio uN will almost be the same as the ratio of 

trapped fluid’s width. For example at Ra=10
8
 uN =1.76 

for Sb=0.2 and =1.21 for Sb=0.3, the ratio is 1.46, while 

the width ratio is 0.6/0.4=1.5. Furthermore, for 

4.0=bS where the width of the trapped fluid becomes 

smaller, equal to 0.2, uN is decreased by 88% at Ra=10
4
 

and is 98% at Ra=10
8
, the average is 94.2%. These 

values suggest that the case with 4.0=bS  blocks the heat 

transfer rate more effectively than the latter cases. This is 

because the width of the trapped fluid becomes smaller. 

The width ratio of the trapped fluid 

for 3.0=bS and 4.0=bS  is 0.4/0.2=2, this ratio is almost 

the same with uN ratio that is 1.91 for Ra=10
6
, 1.97 for 

Ra=10
7
 and 2.0 for Ra=10

8
. These results reveal that the 

change in uN is trapped fluid’s width dependent which is 

related to the baffle positions.    
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Fig. 6 Nusselt number as a function of Ra for the case  

7.0=bL with bS as a parameter 

    

For Sb=0.6, uN  is decreased by 88% at Ra=10
4
, 

92% at Ra=10
5
, 63% for Ra=10

6
, and less than 50% for 

Ra>10
6
. At low Ra regions this case blocks the heat 

transfer significantly (>85%) because the two vortexes 

have not merged. For Ra>10
6
 the heat transfer rate is 

blocked less than 50% because the two separated 

vortexes have merged. For Sb=0.7, uN  is decreased 

by 83% at Ra=10
4
, 63% at Ra=10

5
, less than 50% for 

Ra>10
5
. And for Sb=0.8, uN  is decreased by 74% at 

Ra=10
4
, 62% at Ra=10

5
, about 50% for Ra>10

5
. These 

results are in accordance with the observations that are 

made in Fig. 3 and Fig. 4 that the trapped fluid in the top 

left and bottom right of the cavity cover some vertical 

walls and inactive respect to convection and conduction 

heat transfer. The uncovered vertical walls still have a 

significant effect on the total heat transfer rate.  

The graph also shows that for cases when 5.0>bS at 

high Ra regions uN  is only a function of Ra and it is 

not affected by the baffle positions. This is because total 

heat transfer rate correlates with the uncovered vertical 

walls only. Another feature is that at high Ra regions the 

lines of uN  for the cases are parallel with the cavity 

without baffle. This is because at high Ra regions the 

heat transfer characteristics for these cases will be 

similar in comparison to the cavity without baffle. The 

only difference is in the length of the uncovered vertical 

walls 

Fig. 6 is for Lb=0.6. The graph shows that the 

appearance of uN  lines pattern is similar with the 

corresponding case when 6.0=bL . The only differences 

are in the quantity of uN . This is because the length of 

the baffles changes dimension of the trapped fluid and 

finally affects the quantity of uN . For cases with Sb < 0.5 

where uN  depends on the dimension of the trapped 

fluid between the two baffles, the longer baffles are 

related to the longer trapped fluid. The length of the 

trapped fluid for the case with 6.0=bL  is 0.2 and for the 

case with Lb=0.7 is 0.4, the ratio is 0.5. Since uN is 

trapped fluid’s dimension dependent that increases as its 

width increases but decreases as its length increases, 

uN for Lb=0.7 is about 0.5 times lower than Lb=0.6. For 

cases with 5.0>bS  where the total heat transfer rate 

correlates with the natural convection on the uncovered 

vertical walls, the baffles length show significant effect 

in the quantity of uN . The baffle with Lb=0.7 covers the 

vertical wall 70% (the uncovered wall is 30%). Since the 

heat transfer rate correlates with natural convection on 

the uncovered vertical walls then the cases with longer 

uncovered areas reveal the higher uN . This results in 

uN  for case with Lb=0.7 being lower than Lb=0.6. 

Fig. 7 is for 8.0=bL . It was observed, again, that the 

appearance of the uN  lines is similar to the latter 

cases 6.0=bL and 7.0=bL . As expected since the baffles 

are longer than in the latter cases the total heat transfer 

rate for this case is lower. The figure shows Nusselt 

numbers for cases with 5.0<bS always less than 1 and 

for cases with 5.0>bS always less than 10. The reasons 

are already discussed in the aforementioned paragraph. 

0.1

1

10

100

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Ra

N
u

Sb=0.2 Sb=0.3 Sb=0.4

Sb=0.6 Sb=0.7 Sb=0.8

Ra

uN

bS bS bS

bS bS bS

Fig. 7 Nusselt numbers as a function of Ra for the case 

8.0=bL with bS as a parameter 

 

4.3    Heat Version of Diode 

Another interesting phenomenon of the typical 

cavity is that a particular case is the opposite of the 

other case as long as the sum of bS is equal to 1. The 

case when Sb=0.2 is the opposite of the case when Sb=0.8, 

 © 2006 The Heat Transfer Society of Japan 



Thermal Science & Engineering Vol.14 No.3 (2006) 

-   - 44

the case when Sb=0.3 and Sb=0.7, and the case when 

Sb=0.4 and Sb=0.6. For example, a pair Sb=0.3 and Sb=0.7, 

the case when Sb=0.3 will reveal the same results (flow 

fields, temperature fields and uN ) with Sb=0.7 if its 

vertical walls temperature are reversed with each other. 

In this cavity ( 3.0=bS ), if the left wall is hotter than the 

right wall uN at Ra=10
8
 is 1.21 (blocks the heat 96%) but 

if the right wall is hotter than the left wall (the same case 

with Sb=0.7) uN at Ra=10
8
 is 15.9 (passes the heat 

52.3%) compared to the cavity without baffle. This 

means that the same cavity can significantly block the 

heat from the left to the right wall but can also allow it to 

flow from the right to the left wall. 

An additional calculation for a particular cavity with 

3.0=bS and 6.0=bL at Ra=10
7
 when 1=lθ was carried 

out. The right wall was fixed at temperature 0=θ and the 

left wall temperature was varied from 1=lθ , 0.8, 0.5, 0.2, 

-0.2, -0.5, -0.8, and -1.  

The flow fields are presented in Fig. 8. The figure 

shows that for 1=lθ , 0.8, 0.5, and 0.2 the trapped fluid 

exists between the two baffles, separates the primary 

vortex and switches off the convective heat transfer. This 

results in a very low uN  or blocks the heat transfer 

significantly. For 2.0−=lθ , -0.5, -0.8, -1 the separated 

vortexes have been merging and create a counter 

clockwise primary vortex. The fluids in the bottom left 

and top right of the cavity become trapped due to 

presence of the baffles and inactive respect to convective 

and conductive heat transfer. The heat transfer rate is still 

significant due to natural convection on the uncovered 

vertical walls. 

Nusselt number for this particular case as a function 

of the left wall temperature is shown in Fig. 9. As a 

reference, we note that uN =16.75 for the cavity without 

baffle. The figure shows that if the temperature of the left 

wall is hotter than the right wall uN  is very low and 

only about 1 (the heat is blocked up to 94%). If the 

temperature of the left wall is colder than the right wall 

uN  is 8.23 (the heat is transferred up to 49%).  In 

order to evaluate the performance of the cavity to 

transfer and to block the heat flow a parameter has been 

promoted and named as a heat flow coefficient. The heat 

flow coefficient is defined as a ratio of uN  when the 

fluid flow creates a primary vortex and uN  when it is 

blocked. The heat flow coefficient is calculated by using 

equation (13).  

 

blocked

gcirculatin

uN

uN
K =                        (13) 

By using this equation the heat flow coefficient for the 

particular cavity with 3.0=bS and 6.0=bL at Ra=10
7
 is 

K=8.23/1=8.23. It does mean that the particular cavity 

can pass the heat 8.23 times more than the blocked heat.  

 The heat flow coefficient for all cases at Ra=10
6
, 

Ra=10
7
, and Ra=10

8
 are presented in Fig. 10. The figure 
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Fig. 8 Flow fields for a particular cavity with 3.0=bS   

and 6.0=bL  when the right wall temperature was  

fixed at 0=θ  while the left wall was varied 

from 1=θ  to 1−=θ  
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Fig. 9 Nusselt numbers for a particular cavity with 

3.0=bS and 6.0=bL as a function of the left wall  

temperature with the right wall fixed at 0=rθ  
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shows that for higher Rayleigh numbers K is relatively 

bigger. It can be seen that the best combination of the 

baffle dimension and position is for baffle length 

7.0=bL and its position 4.0=bS . This combination gives 

K=7.21 at Ra=10
6
, K=20.24 at Ra=10

7
, and K=35.6 at 

Ra=10
8
. 
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Fig. 10 Heat flow coefficient of the typical cavity for  

Rayleigh numbers Ra=10
6
, Ra=10

7
, and Ra=10

8 

 

In fluids, a check valve is a mechanical device, a 

valve that normally allows fluid to flow through it in 

only one direction. Furthermore in electronics, a diode is 

a component that restricts the direction of movement of 

charge carriers. It allows an electric current to flow in 

one direction, but essentially blocks it in the opposite 

direction. Thus the diode can be thought of as an 

electronic version of a check valve. It was shown that the 

typical cavity allows the heat to flow in one direction but 

significantly blocks it in the opposite direction. Since the 

typical cavity acts like a check valve or a diode it will be 

referred to as a heat version of a diode. We are convinced 

that the characteristics of the cavity as a heat version of a 

diode will be significantly affected by the aspect ratio of 

the cavity. However in this paper only the square cavity 

is considered. This is because we intend to only provide 

the information that the cavity with baffles attached to 

the horizontal walls can be considered as a heat version 

of a diode. The full investigation of this cavity as a heat 

version of a diode remains to be investigated.      

 

5 Conclusions 

 

Heat transfer by natural convection in a 

differentially heated square cavity with two thin 

insulated baffles has been numerically studied. The 

cavity was performed by vertical isothermal walls and 

adiabatic horizontal walls. Two thin insulated baffles 

were attached to its horizontal walls at symmetric 

positions. Its non-dimensional length,
b

L was varied from 

0.6, 0.7, and 0.8 and its non-dimensional 

positions,
b

S from 0.2 to 0.8. Rayleigh number ranged 

from 10
4
 to 10

8
.  

The conclusions can be drawn from this study are as 

follows. The presence of the two baffles with 

non-dimensional length greater than 0.5 totally modifies 

the flow and temperature fields compared to the 

corresponding cavity without baffle. Two different flow 

field patterns were observed. The first pattern is flow 

fields with two different vortexes separated by a trapped 

fluid between the baffles and the second pattern is flow 

field with a primary vortex strangled by two trapped 

fluids. The flow field pattern is non-dimensional baffle 

positions and Rayleigh numbers dependent. For cases 

when 5.0<bS at low Rayleigh numbers the flow tends 

to circulate as a single primary vortex but at high 

Rayleigh numbers tends to separate into two different 

vortexes. For cases with 5.0>bS at low Rayleigh 

numbers the flow tends to separate into two different 

vortexes but at high Rayleigh numbers tends to circulate 

as a primary vortex. Nusselt number is an increasing 

function of Ra and a decreasing function of baffle’s 

length. For cases when Sb <0.5, uN is trapped fluid’s 

dimension dependent that increases as its width increases 

and decreases as its length increases especially for high 

Ra regions. For cases when Sb >0.5, uN is the uncovered 

vertical walls lengths dependent.  Another interesting 

phenomenon of the typical cavity is that a particular case 

is the opposite of the other case as long as the sum 

of bS is equal to 1. It was shown that the typical cavity 

allows the heat to flow in one direction but significantly 

block it in the opposite direction. Since the typical cavity 

acts like a check valve or a diode it will be referred to as 

a heat version of a diode. In order to evaluate the 

performance of the cavity to transfer and to block the 

heat flow a parameter has been promoted and named as a 

heat flow coefficient. The heat flow coefficient is defined 

as a ratio of uN  when the heat is transferred and uN  

when it is blocked. The best combination of the baffle 

position and its length in order to block and to pass the 

heat flow is the particular cavity with 7.0=bL and 

4.0=bS . 
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