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Molecular Dynamics Study onWave Equation of Liquid

Tatiana ZOLOTOUKHINA and Toshihiro IWAKI

Abstract
The equation of wave propagating in fluid is described as a differential equation of the velocity or small element

density from the Navier-Stokes (NS) equation. On the other hand, the molecular dynamics (MD) equation expresses the
motion of a particle constituting the fluid and shows that the particle is always in motion regardless of the existence of
the wave. In this study, we discuss in what way meanings of the velocity and density in the wave equation can be
adopted in the MD system. What are the differentials with respect to time and space in the NS equation for the system
of MD particles? Ordinarily, the physical quantities in the NS equation are obtained as the ensemble and time averages
over the MD system. We investigate the number of particles and duration of time that are sufficient for the averages and
simultaneously confirm whether the averaged values satisfy the differential equation. The two-dimensional MD method
is used for the qualitative understanding. The fluid is assumed to consist of particles connected by the Lennard-Jones
potential. The satisfaction of the differential equation by the MD averaged values is shown by the propagation velocity
in the wave equation. The propagation velocity can be also obtained in another way i.e. by the observation of the wave
fronts motion of velocity, density or total energy wave in the fluid. The propagation velocity that has resulted from the
wave equation is strongly affected by the ensemble and time averages. On the other hand, when it is obtained from the
wave front, it is independent of the ensemble and time averages. We can have the former propagation velocity close to
the latter one when a long time average is used for a large ensemble and a short time average for a small ensemble, i.e.
the product of both averages can be considered changed at same rate as if by a scaling coefficient.

Key Words: Molecular dynamics, Wave equation, Wave front, Liquid

1 Introduction

Theoretical studies of thermo-fluid phenomena by
using the continuum mechanics have been the subject of
the ongoing research for several decades because of the
extended importance in wide range of practical engi-
neering applications. The continuum characteristics of
the thermo-fluid phenomena is obtained by solving gov-
erning equations describing conservations of mass, mo-
mentum and energy in an extremely small cubic element
or unit cell (called thereafter the element) under certain
boundary and/or initial conditions. The extremely small
cubic element is considered to be homogeneous and con-
tinuous there. It is assumed in the continuum mechanics
that, in the cubic element, the temporal and spatial de-
viations of the physical quantities such as density or
pressure from their average values are very small. This
assumption enables the deviations to be linear. Then we
can ignore the terms higher than second order one of the
Taylor s series expansion and represent the deviation by
the first order derivative. Therefore, the governing equa-
tions are expressed by differential equations. This dif-

ferential equation approach represents the approach to
the physical phenomena that are considered continuous.
The study using the continuum mechanics is the macro-
scopic one.

However, from the physical viewpoint, the cubic
element consists of many atoms and/or molecules in mo-
tion at high velocity. The element is not continuous but
discrete microscopically. Atoms and molecules are as-
sumed to be called particles hereafter. The motion of a
particle is expressed by the MD equation and then the
cubic element is nothing but a limited volume of space.
Particles don t (continuously) always stay in a certain
cubic space and may move in or out from the cubic
space to the neighboring elements due to their individual
motion. The cubic element is not homogeneous in rela-
tion to the number and type of particles that are moving
inside it.

Due to the duality of approaches, here we have a
very important and fundamental problem of connection
between the continuum mechanics and the particle mo-
tion outlined by the following questions. How the
physical quantities in the governing equations of the
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continuum mechanics are derived from characteristics of
the particle motion? What are definitions of differentials
x and t of the governing equations in the MD system?

Namely, how can the MD method connect particle mo-
tion to the continuum mechanics? The answer to the
problem will make clear how small a unit size and how
short a time interval can be applied in the continuum
mechanics in the limit of small scale.

For the problem stated, the governing equations of
the continuum mechanics were derived from the MD
equations [1-4] by Kotake. He concluded that the local
uniformities in the temporal and spatial scales are nec-
essarily demanded in the MD system for the connection
of particle motion to the continuum mechanics. If the
MD system has no such local uniformities, it cannot ex-
plain even non-equilibrium and/or unsteady state mac-
roscopic mechanical phenomena. These conclusions lead
us to discuss what the local uniformities are and then
how they are obtained in the real MD simulation.

In order to determine the local uniformity, the plane
elastic wave, that is a propagation of disturbed dis-
placement of an extremely small cubic element in an
elastic solid continuum, was investigated as one of the
typical non-equilibrium and unsteady state macroscopic
mechanical phenomena [5]. It was found that, if an ap-
propriate average value of particle displacement with
respect to space and time in the MD system was defined
as the displacement of a point in the elastic solid contin-
uum, it behaved like in the wave equation of the contin-
uum mechanics.

There are many types of disturbances propagating in
a medium besides the displacement wave and are differ-
ent mediums propagating various types of disturbances.
Therefore, it would be important to compare whether
some or all features and behavior of chosen disturbances
are same as the displacement wave. In the present study,
propagations of disturbed velocity and density waves in
a liquid are investigated. They are compared with the
plane elastic wave. Although, the wave propagation of
the energy disturbance is not described by the same type
of the wave equation as the motion of the disturbance in
velocity or density waves, it is also examined.

We use Lennard-Jones particles and calculate their
motions by means of the two-dimensional MD method
for understanding of the phenomenon qualitatively.

2 Wave Equation and Particle Motion

In the continuum mechanics, the wave equation for
disturbed velocity (or density waves), u, is expressed by

(1)

under the conditions of stationary fluid and an isentropic
change, where c is a propagation velocity and is given

by

(2)

or

(3)

where P, and are pressure, density and specific heat
ratio, respectively. There is no wave motion without dis-
turbance, and a region of disturbance propagation should
have a coherent change in respective values of the wave.
On the other hand, the particle is always in motion re-
gardless of the wave. The motion of a particle constitut-
ing the liquid is expressed by the MD equation

(4)

where m and x are the mass and position of the particle,
respectively, and F is the force acting on the particle.

3 Model and Calculation Method

The potential of the Lennard-Jones particl is
12 6

,
, ,

4
r r

(5)

Fig. 1 Particles near the left end of the MD system
and definition of subregion.

Fig. 2 Time development of calculation procedure.

Fig. 3 Average with respect to time and definition of
time interval.
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where , and r , are the potential depth, the length pa-
rameter and the distance between particles and , re-
spectively. We have the following dimensionless energy,
pressure, length, temperature, time, velocity and density.

1
24

e e ,
24

f

P P , 1 r r ,
24

Bk T T ,

2

24 t t
m

,
24
m v v ,

f

m
(6)

Here kB and f are Boltzmann s constant and dimension,
respectively. We set f=2 for the two-dimensional MD
method.

Figure 1 shows a particle configuration close to and at
the disturbance generation region on the left end of the
MD system. The unfilled circles ( ) show liquid parti-
cles, their number being 17360. The number of particles
of two rigid walls marked by filled circle ( ) at the left
and right ends is 280. The periodic boundary condition is
employed in the y direction. The equation (4) of molecu-
lar motion is transformed into the difference equation
and the time difference t=0.01 is used. Particles are set
in motion under the conditions of temperature
T=1.95×10-2 and pressure P=5.10×10-3. If the particles
are argon atoms, the time difference is equal to 4.4 fs and
the temperature is 55K. As shown in Fig. 2, we put t=0
after a considerably long time elapses. In order to inves-
tigate the direction of the wave, the rigid wall on the left
hand side is moved to the distance 0.677 at an angle of
60° relative to the x axis during the time duration of
10.38.

The physical quantities in the continuum mechanics
are obtained from the spatial and temporal averages of
the properties of MD system. Therefore, the point of
matter is focused on how large space region and how
long time are required for the wave equation (1). For the
spatial average, a series of subregions are defined in the
liquid and are named subregion i=1, 2, 3 and so on from
the left hand side to the right hand side as shown in Fig.
1. Four kinds of subregion width are employed i.e.

xi=20, 40, 80 and 160. We always have yi=20. Then
the average numbers of particles iN are 288, 577,
1153, and 2307, respectively, where Ni is the number of
particles in a subregion i, the symbols and ¯ mean
the averages with respect to subregion and time, respec-
tively. The distance between the neighboring subregions
is denoted by xs and is used as x in the wave equation
(1). We set xs= xi. As shown in Fig. 3, the average time
between ta and tb is expressed as tn=n t and four kinds of
n =99, 999, 2999, and 9999 are taken. The values aver-
aged with respect to time are defined as those at the
middle time j (tj). The time interval ts between the
neighboring average values is set to be equal to n t and
is used as t in the wave equation (1).

We define the disturbed velocity, density, total en-
ergy and pressure in a subregion i at a time j as

(7)

(8)

(9)

respectively, where v and et are the velocity and total
energy of particle , respectively, and Si is the area of the
subregion i. The derivatives at both sides of Eq. (1) are
transformed into the difference equations. For example,
the left side is

(11)

The macroscopic propagation velocity, c, is calculated
from the MD system by use of Eqs. (1) and (11).

Fig. 4 Time development of disturbed velocity vx .
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Fig.5 Time development of disturbed total energy et .

Fig.6 Time development of disturbed velocity y .

3 Results and Discussions

3.1 Averages with respect to particle and time
Figure 4 shows the time development of disturbed

velocity vx and is arranged from the top to the bottom by
amounts of average i.e. ( xi=20, n=99), ( xi=20, n=999),
( xi=160, n=999) and ( xi=160, n=9999). As shown in
the figure, the disturbed velocity increases abruptly at
t 250 as if an arrival of a wavelike matter because the
value of the disturbed velocity is almost zero before the
arrival. After then, it decreases gradually and is ap-
proaching to zero again. Therefore we can consider that
the abrupt increase is the disturbed velocity wave. As
shown in the top graph of Fig. 4, the value of the dis-
turbed velocity before the arrival of the wave is not ex-

actly zero and this result is different from one in the con-
tinuum mechanics. If the amount of average is large,
the disturbed velocity increases gradually as time
elapses as shown in the bottom graph of Fig. 4. The
value of the disturbed velocity before the arrival of the
wave is almost zero as if in the continuum mechanics.
The maximum value of vx decreases and the small fluc-
tuations of high frequency of the curve disappear as the
amount of average becomes large. The time of the maxi-
mum disturbed velocity comes later for the case of large
subregion ( xi=160) relative to small subregion ( xi=20).
It is concluded that the disturbed velocity curve strongly
depends on the amount of average with respect to time
and space. The features of the disturbed velocity for the
other cases of the amount of average are
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Fig. 9 Maximum values of disturbed velocity vx and its
derivatives 2vx/ x2 and 2vx/ t2 vs. number of av-
erages.

Fig. 10 Position of wave front (for the case of small
amount of average) as changed with time.

Fig. 11 Position of wave front (for the case of large
amount of average) as changed with time.

Fig. 14 Propagation velocity obtained from large amount of
average relative to the wave motion coordinate x.

Fig. 12 Relation between density and pressure.

Fig. 13 Propagation velocity obtained from small amount of
average vs. the wave motion coordinate x.
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between the top and bottom figures of Fig. 4. We also
investigated the disturbed density, pressure and total en-
ergy. The time developments of disturbed density and
pressure are very similar to the one of the disturbed ve-
locity but the total energy (Fig. 5) differs from them.
However, a wave-like pattern can be found also in the
total energy curve although it is not as clear as shown in
the bottom two graphs of Fig. 4.

In order to know in which direction the wave propa-
gates, we moved the rigid wall on the left hand side to-
wards the upper right. As shown in Fig. 6, we can find
no wave in the y direction but only small fluctuations.
This result shows that the shear wave such as a distor-
tional wave in solid [5] is not produced in a fluid even in
the nano scale system. The wave propagates in the nor-
mal direction relative to the rigid wall surface.

Figures 7 and 8 show the second partial derivatives
of the disturbed velocity with respect to time and space,
respectively. They are also arranged from the top to bot-
tom in the same manner as Figs. 4, 5 and 6. When the
amount of average is small, fluctuations of the second
partial derivatives are remarkable and the steep changes
of the derivatives due to the arrival of the wave disap-
pear in the fluctuations. On the other hand, if the large
ensemble and long time averages are used, these steep
changes come out clear as a maximum or a minimum
value.

From Figs. 4, 7 and 8, we assembled the maximum
values of the disturbed velocity and its second partial
derivatives with respect to space and time, respectively,
at the time close to arrival of the wave. They are shown
in Fig. 9. They strongly depend on the amount of aver-
age when n is large. It can be supposed that the magni-
tude of the disturbance itself and its second partial de-
rivatives with respect to space and time, respectively,
will disappear when a huge amount of average is used.

We also investigated the disturbed density, pressure
and total energy. They have very similar features to the
disturbed velocity.

From these results, it can be concluded that if the
amount of average is large, the peak values of physical
quantities decrease and their temporal and spatial deriva-
tives, respectively, also disappear. The degree of the de-
crease depends on the physical quantity and the amount
of average.

The times of the maximum values in Figs. 7 and 8
correspond to the start of the abrupt increase of the dis-
turbed velocity vx as shown in Fig. 4. Therefore, we can
find the wave front and the arrival time from Figs. 7 and
8. The times when 2vx/ t2 and 2vx/ x2 attain their maxi-
mums are not always identical. If the amount of average
is large, this time difference will be very small as de-
scribed later (Figs. 13 and 14).

3.2 Propagation velocities of the wave of dilatation
and distortion

The propagation velocity of the wave can be experi-

mentally obtained as a numerical value by measuring the
arrival times of the wave front at each subregion. Figure
10 shows the relation between the positions of the center
of subregion and the arrival times of the wave front there.
In order to find the arrival time of the wave front, we
used two ways, that is, 2vx/ t2 (Fig. 7) and 2vx/ x2 (Fig.
8) values. The marks denoting 2vx/ x2 take positions
along a slightly curved line. It can be supposed that they
are located roughly on a straight line. Then, the wave
front velocity c=1.138 is obtained. If the particles are
argon atoms, the velocity is 873m/s and is close to a
general sound velocity of 900~1500m/s for liquid.
Therefore, it can be concluded that the value of 1.138 is
the macroscopic propagation velocity. Let us call it a
propagation velocity obtained from the wave front here-
after. On the other hand, the marks denoting 2vx/ t2

are scattered over a large value region. Therefore, the
propagation velocity cannot be obtained from them. If a
large amount of average is used, the marks are on a
straight line as shown in Fig. 11. Then, we have wave
group velocity c=1.049 and this value is very close to the
previous one of 1.138. Because the velocities obtained
from Figs. 10 and 11 are almost equal, it can be con-
cluded that the propagation velocity obtained from the
wave front is independent of the amount of average ex-
cept for the very small amount of average.

The propagation velocity is also obtained from the
mechanical property of the liquid, i.e. Eq. (2). Figure 12
shows the relation between density and pressure ob-
tained for the case of xi=160 and n=9999. Although, the
relation is not exactly linear, it is approximated as a lin-
ear one shown by a straight line. Then we extrapolate
c=1.009 from the estimation of p by the upper linear
dependence. This value is also close to 1.138.

The macroscopic propagation velocity is also calcu-
lated in other way i.e. by the wave equation (1) in the
continuum mechanics. We find first the times when

2vx/ t2 and 2vx/ x2 attain maximum or peak around
the arrival time of the wave and then obtain the values of

2vx/ t2 and 2vx/ x2 at the times. This makes four values
i.e.

(12)

(13)

(14)

(15)

Combining four values, we have four kinds of
propagation velocities i.e. {Eq. (12)÷Eq. (14)}½, {Eq.
(12)÷Eq. (15)}½, {Eq. (13)÷Eq. (14)}½ and {Eq. (13)÷
Eq. (15)}½ which are shown by marks , , and ,
respectively, in Figs. 13 and 14. The horizontal lines in
the figures show the values obtained previously from the
wave front. For the case of small amount of average, the
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values shown by marks , and are considerably
scattered but ones shown by marks have almost the
same value (Fig. 13). However, the points marked by
are remarkably far from the straight line. The propaga-
tion velocity obtained by the small amount of average is
very large. It can be concluded that x and t in the wave
equation (1), which have been approximated by the finite
difference elements with gradually decreasing size, are
not respectively identical with an infinitesimally small
length and time used in Taylor s series. Therefore, x and
t are finite from the physical point of view.

As shown in Fig. 14, if a large amount of average is
used, the difference among the values of marks , ,
and decreases and these marks approach to the straight
line. It can thus be said that the disturbed velocity de-
fined in the continuum mechanics is averaged with re-
spect to particle in a region and time in the MD system.

Fig. 15 Relation between propagation velocity of wave 
of disturbed velocity and space and time aver-
ages. 

Fig. 16 Relation between propagation velocity of wave
of disturbed density and space and time averages.

Figure 15 shows the effect of the amount of average on
the propagation velocity obtained by the wave equation.
The horizontal broken line indicates the propagation
velocity obtained from the wave front. If a large subre-
gion, that is, a large space average is applied together
with the small time average, the propagation velocity
obtained from the wave equation differs from that one of
the wave front. In addition to this space average, if the
time average increases, then the propagation velocity is
close to one marked by the horizontal broken line. When
a long time average over n=10000 is used, the propaga-
tion velocity deviates from the horizontal broken line
again. The reason is not clear at the present time. In or-
der to make a value close to the propagation velocity
obtained from the wave front, it is necessary to select an
appropriate time average for a certain space average.

Figure 16 shows the effect of the amount of average
on the propagation velocity of the disturbed density ob-
tained by the wave equation in the same manner as the
disturbed velocity wave. We have the result that is simi-
lar to the disturbed velocity wave.

The marks in Figs. 15 and 16 show the case of the
disturbed pressure obtained from several numerical ex-
periments when xi=160. The results are also very simi-
lar to the cases of the disturbed velocity and the dis-
turbed density.

Figure 17 shows the case of the total energy which
can not be expressed by Eq. (1) along with the potential
and kinetic energies obtained from several numerical
experiments when xi=160. Their results are also very
similar to the cases of the disturbed velocity and the dis-
turbed density.

Kotake concluded that the MD system can not ex-
plain non-equilibrium and/or unsteady state macroscopic
phenomena if it has no local uniformities as described in
the introductory section. It can be expected that if a large
amount of average is used, the

Fig. 17 Relation between propagation velocity of wave
of disturbed energies and space and time aver-
ages.
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physical quantities become locally equilibratory and lo-
cally uniform. However, Figs. 15, 16 and 17 show that
the propagation velocity obtained from the wave equa-
tion does not approach to one obtained from the wave
front motion only by increase in the amount of average.
The propagation velocity obtained from the wave equa-
tion is identical with the one from the wave front when a
long time average is used for a large ensemble and a
short time average for a small ensemble. It is necessary
to select an appropriate combination of time and space
averages relative to a particle system being studied. This
conclusion is the same as in the case of propagation of
the disturbed displacement in an elastic solid continuum
[5].

4 Conclusion
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   The present calculation of the wave front motion in 

liquid has been done for the case of two-dimensional 

(2D) sample. In order to validate our conclusions ob-

tained in 2D reduction for the case of three-dimensional 

calculations, one has to take into account the force nature 

between particles and two-body approximation of LJ 

potential. Presence of neighbors in the third dimension 

will cause the interaction potential of each particle to be 

approximately 20 to 30% deeper compared with 2D one. 

The individual particle motions will also change velocity 

characteristics. However, change will be localized 

mostly in the vibrational motion of each particle and 

system averages used in this study will be applicable and 

valid for the 3D system. Wave front propagation in 3D 

particle medium as well as in 2D one is a one-dimensional 

simultaneous motion of perturbation of some values, spa-

tially and temporally localized within several layers 

normal to the wave motion. With deeper potential and 

shorter bonds at the same values of temperature and 

pressure in the system as compared with the 2D case, the 

3D calculation will show a higher rate of perturbation 

exchange in the unit of time between layers normal to 

direction of wave front motion. It will result in the in-

crease in the amplitude of perturbation of around 10 to 

15%, in our estimation. The group velocity of the wave 

as a collective process should be affected less by the 

depth of the particle bonds, the shift of the values in 

some 10% margins can be expected as we have seen in a 

pressure estimation compared for two-body and 

three-body potentials. Exact values can be obtained only 

by direct 3D calculations, though the dependencies ob-

tained for the wave front motion should remain similar 

in the 2D and 3D evaluations. 

   In summary, the question whether and at what condi-

tions the wave equation in the continuum liquid can be 

precisely described by particle motions in the MD sys-

tem has been answered positively and conditions have 

been clarified. For a given system of particles of defined 

size and population of species, if an appropriate spatial 

and temporal average value of particle motion can be 

defined, the averaged characteristics of motion under 

condition of wave propagation correspond to the wave 

equation of the continuum mechanics. Relating to the 

size of the MD model, the spatial region average as it 

was shown should be directly proportional to the average 

size of time interval. Such wave behavior was confirmed 

for the propagation of the velocity, density, and pressure 

disturbance wave, as well as for the energy disturbance 

wave. Then, the wave propagation velocity can be ex-

tracted from the continuous wave equation. For 

two-dimensional Ar model, obtained values of c in in-

terval from 1.138 to 1.009 are close to general sound 

velocities in liquid. 

○C 2007 The Heat Transfer Society of Japan 


