乱流熱伝達を伴うクエット流れにおける大規模構造

On the Large-Scale Structure of Turbulent Heat Transfer in a Plane Couette Flow

Takahiro TSUKAHARA[†], Kaoru IWAMOTO^{† ‡} and Hiroshi KAWAMURA[†]

Abstract

Direct numerical simulation of turbulent heat transfer in a plane Couette flow at Reynolds numbers of 3000 and 8600 (based on the relative wall speed and the channel width) has been performed with emphasis on a large-scale turbulence structure (LSS). Two kinds of temperature boundary conditions are employed; one is the uniform heat flux heating (UHF) and the other is the constant temperature difference between the walls (CTD). A series of DNS has been carried out for several larger computational box sizes than those of existing DNS's to examine their effect upon the LSS of the thermal field and the statistical quantities such as temperature variance. The differences caused by the boundary conditions of temperature field are discussed with respect to the LSS. For CTD, the LSS is remarkable in the outer region and is observed to be similar to that of the velocity field. Using the present largest box size of $96h \times h \times 12.8h$, the average streamwise and spanwise spacing of the LSS in both velocity and thermal fields are found to be $\lambda_x=32\sim48h$ and $\lambda_z=2.1\sim2.5h$, respectively. In addition, it is concluded that the box needs to be larger than the size of the LSS in order to assess the accurate statistics such as Nusselt number.

Key Words: Turbulence, Direct numerical simulation (DNS), Plane Couette flow, Heat transfer

記号	}						
C_f	:	壁面摩擦係数		u	:	速度ベクトル=(u, v, w)	[m/s]
c_p	:	定圧比熱	[J/(kg·K)]	U_w	:	壁面相対速度	[m/s]
E_{ij}	:	エネルギースペクトル	$[m^{3}/s^{2}]$	u_{τ}	:	摩擦速度 = $(\tau_w/\rho)^{1/2}$	[m/s]
h	:	チャネル幅	[m]	Х	:	座標 =(x, y, z)	[m]
k_i	:	i方向波数ベクトル	$[m^{-1}]$	δ	:	チャネル半幅 =(h/2)	[m]
Nu	:	ヌッセルト数		ΔT	:	上下壁面間の温度差	[K]
р	:	圧力	[Pa]	θ	:	温度偏差	[K]
Pr	:	プラントル数		$\widetilde{ heta}$:	線形な温度分布(層流時	[K]
$q_{(total)}$:	(全)熱流束	$[W/m^2]$			の温度分布)からの偏差	
R_{ij}	:	二点相関係数		λ	:	熱伝導率	[W/(m·K)]
Re_w	:	レイノルズ数 = $(U_w h / v)$		λ_i	:	i 方向波長	[m]
Re_{τ}	:	レイノルズ数 = $(u_\tau \delta/v)$		V	:	動粘性係数	$[m^2/s]$
t	:	時間	[s]	ρ	:	密度	[kg/m ³]
Т	:	瞬時温度	[K]	τ	:	せん断応力	[Pa]
T_{τ}	:	摩擦温度 = $(q_w / \rho c_p u_\tau)$	[K]				

受付日: 2006年10月3日, 担当エディター: 功刀 資彰

* 東京理科大学 理工学部機械工学科 (〒278-8510 千葉県野田市山崎 2641)

* 東京農工大学大学院 工学府機械システム工学専攻 (〒184-8588 東京都小金井市中町 2-24-16)

添字		
()'	:	変動値
()*	:	<i>h, U_w, ∆T</i> による無次元数
$\left(\right)^{+}$:	<i>u</i> _τ , <i>v</i> , <i>T</i> _τ による無次元数
$\overline{()}$:	アンサンブル平均値
<i>b</i> , <i>t</i>	:	下壁面および上壁面の値
т	:	混合平均した値
rms	:	二乗平均平方根
W	:	壁面上の値

1 緒 言

クエット乱流は平行平板間(チャネル)乱流の一 つで, 圧力勾配駆動のポアズイユ乱流と同様にカノ ニカルな壁乱流であり,古くから幅広く実験が行わ れてきた[1-5]. 近年では大型並列計算機の発達に伴 い、直接数値シミュレーション(DNS)が乱流現象 解明の強力なアプローチとして広く使用され、クエ ット乱流についても適用されてきた[6-9]. また, 乱 流熱輸送の DNS を行うことにより、一定範囲内の 各種レイノルズ数やプラントル数に対する詳細な結 果を得ることが可能である.しかし、乱流熱伝達の 解析対象となる流れ場は、ポアズイユ乱流が対象と なることが多く[10-12]、実験による検証が困難であ ることからも、クエット乱流を対象とした DNS に よる研究例は少ない. クエット乱流では、チャネル 中央まで平均速度勾配を有し, ポアズイユ乱流に比 べて乱れの非等方性も強いことから、速度境界条件 の違いによる熱流動特性への影響は当然に予期され る. そして、クエット乱流中のスカラー量・熱の輸 送中に観察される現象(特に、外層の構造が及ぼす 影響)に関する知見は、例えば相対運動する発熱・ 冷却機器周りの乱流熱伝達におけるメカニズムの理 解や熱流動特性の評価に寄与する. さらに、様々な 熱的境界条件を付加して得る各種統計量は、ポアズ イユ乱流における統計量と同様、乱流モデルの構築 に有用である.

クエット乱流は, チャネル全幅 h に及ぶ大規模な 高速・低速領域が主流方向に非常に長い範囲で生じ る特徴的な構造(大規模構造と呼ぶ)をもつことが 知られている[1,2,4].中林ら[3]や Kitoh ら[5]は実験 により, Miyake ら[6]や Lee & Kim[8]は DNS により, 外層における主流方向に非常に長い大規模な縦渦構 造の存在を指摘している.しかし, DNS でこの構造 を捉えた上,さらに壁近傍の解像度を十分に確保す ることは非常に困難であった.筆者らのグループ[9]

Fig. 1 Configurations of the thermal fields in the plane Couette flow.

は、クエット乱流の大規模構造を十分捉え得る計算 領域を用いた DNS を行い、発生する構造のスケー ルについて議論した. 乱流熱伝達を伴うクエット流 に関する DNS は、Liu [13]、Debusschere & Rutland [14], Le & Papavassiliou [15] が見られる程度である. これらは、本論文で扱う熱的境界条件の一つ(CTD: 説明後出)のみに関する解析であり、また、温度場 における大規模構造やレイノルズ数依存性について は明らかにされていない.

そこで本論文では平行平板間クエット乱流にお いて、大規模な計算領域を用いた DNS を実施し、 速度場・温度場に観察される大規模構造を明らかに するものである.また、異なる2種の熱的境界条件 を課し、境界条件の違いに対する影響を調べる.さ らに、温度場における大規模構造に与える計算領域 の影響やレイノルズ数依存性を検討する.

2 計算手法

解析対象となる流れ場は、非圧縮性ニュートン流 体における十分発達した平行平板間クエット乱流で ある.流れは、下壁面を固定し、上壁面を一定速度 U_w で動かすことにより駆動される.支配方程式は、 以下の連続の式、およびNavier-Stokes方程式で与え られる.

	-				-			-
Re_w	Box size	Re_{τ}	$L_x \times L_y \times L_z$	$N_x \times N_y \times N_z$	Δx^+	Δy^+	Δz^+	Δt^+
3000	Large	52	$44.8h \times h \times 12.8h$	$1024 \times 96 \times 512$	4.54	0.07~2.33	2.60	0.0143
8600	Small	129	$24.0h \times h \times 6.0h$	$512 \times 72 \times 256$	12.05	0.18~8.34	6.02	0.0307
	Medium	126	$32.0h \times h \times 8.0h$	$1024 \times 96 \times 512$	7.87	0.18~5.66	3.94	0.0295
	Large	126	$44.8h \times h \times 12.8h$	$1024 \times 96 \times 512$	11.03	0.18~5.67	6.31	0.0297
	Long	126	$64.0h \times h \times 6.0h$	$2048 \times 96 \times 256$	7.88	0.18~5.67	5.90	0.0297
	XL	126	$96.0h \times h \times 12.8h$	$2048 \times 96 \times 512$	11.83	0.18~5.67	6.31	0.0297

Table 1 Computational conditions: domain size, L_i ; number of grid points, N_i ; spatial resolution, Δi ; and time step, Δt .

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial u_i^*}{\partial t^*} + u_j^* \frac{\partial u_i^*}{\partial x_j^*} = -\frac{\partial p^*}{\partial x_i^*} + \frac{1}{Re_w} \frac{\partial^2 u_i^*}{\partial x_i^{*2}}$$
(2)

各方程式において, *i*=1~3 はそれぞれ, 主流(*x*)方向, 壁垂直(*y*)方向, スパン(*z*)方向を示す.速度場に関する境界条件は,上下壁面上で non-slip条件とし, 無限の平行平板を模擬するため, *x* 及び *z*方向には周期境界条件を課している.

温度場における境界条件として、上下壁面間温度 差一定条件 (constant temperature difference between two walls, CTD) と、一様熱流束加熱条件 (uniform heat-flux heating/cooling, UHF) の2 通りの条件下に ついて解析を行う (図 1). 異なった熱的境界条件に おいてそれぞれ、次のように温度偏差 θ を用いる.

$$\begin{cases} \text{CTD}: \quad T = T_b + \theta = T_b + \Delta T \cdot y^* + \widetilde{\theta} \\ \text{UHF}: \quad T^+ = T_w^+ - \theta^+ = \frac{\mathrm{d}T_m^+}{\mathrm{d}x^*} x^* - \theta^+ \end{cases}$$
(3)

ここで、 $\tilde{\theta}^{*}(=\theta^{*}-y^{*})$ は温度の線形的な分布からの 変動分で、壁垂直方向の乱流熱流束の影響によるも のである.上下壁面温度差 ΔT で無次元化を行うと、 CTD の場合、エネルギー方程式は以下のように表さ れる.

$$\frac{\partial \widetilde{\theta}^*}{\partial t^*} + u_j^* \frac{\partial \widetilde{\theta}^*}{\partial x_j^*} = \frac{1}{Re_w Pr} \frac{\partial^2 \widetilde{\theta}^*}{\partial x_j^{*2}} - v^*$$
(4)

また、UHF において、壁面温度 T_w は主流方向に対して線形的に増加し、主流方向の平均温度勾配は一定値 $(2/u_m^+)$ となる.これより、UHFのエネルギー方程式は次式で表される.

$$\frac{\partial \theta^+}{\partial t^*} + u_j^* \frac{\partial \theta^+}{\partial x_j^*} = \frac{1}{Re_w Pr} \frac{\partial^2 \theta^+}{\partial x_j^{*2}} - 2\frac{u^*}{u_m^+}$$
(5)

本 DNS における一様熱流束は、上下壁面それぞれ において平均的に一様な熱流束(上下では異なる) を課しており, すなわち, 主流方向温度勾配一定条件である. 上下壁面での温度場の境界条件を以下に示す.

$$\begin{cases} \text{CTD:} \quad \theta_b = 0, \quad \theta_t = \Delta T \\ \text{UHF:} \quad \theta_b = \theta_t = 0 \end{cases}$$
(6)

連続の式とNavier-Stokes 方程式のカップリングに Fractional step 法を用い,時間進行について粘性項 (*y* 方向)には二次精度 Crank-Nicolson 法を,他の項に ついては二次精度 Adams-Bashforth 法を適用した. 空間的離散化には有限差分法を用いた.対流項の離 散化には,スペクトル法との比較で良い一致が確認 されている Consistent scheme [16]を適用する.主流 方向とスパン方向に四次精度中心差分を,壁垂直方 向には二次精度中心差分を用いた.また,壁垂直方 向は不等分割格子としている.

計算条件を表1に示す.大規模構造を捉え得る計 算領域を調べるため,主流方向($L_x = 24 - 96h$)とス パン方向($L_x = 6 - 12.8h$)の領域サイズを変えて解析 を行った.レイノルズ数を $Re_w = 3000$ 及び8600とし, レイノルズ数依存性についても検討する.摩擦レイ ノルズ数は $Re_r = 52$ 及び126~129となる.プラント ル数は空気を想定して 0.71とした.

計算領域 XL を除く計算結果に関して,流れ場の 乱流統計量(乱流強度,レイノルズ応力とそのエネ ルギー収支など)は前報[9]に示した.他グループに よる DNS や実験値と比較し,計算の妥当性を検証 している.また,本解析の XL においても,十分に 統計的定常状態であることを確認してから温度場に おける各種統計値を取得した.

3 結果および考察

3.1 平均量

図 2 に,温度最大値 θ_{max} (CTD では上下壁面温度 差 ΔT) で無次元化した平均温度分布を示す. CTD に おいて Liu[13] による DNS の結果を示すが,良く一

Fig. 2 Mean temperature profile normalized with maximum value.

Fig. 3 Mean velocity and temperature profiles (in the bottom half channel) scaled with the wall units.

致している.両境界条件とも、計算領域の違いによる影響はきわめて小さく、レイノルズ数依存性のみ 観察される.UHFにおいて、温度分布が上壁側と下 壁側で対称となっていないことが見受けられる.こ れは速度分布の非対称性 ($u_b = 0$, $u_t = U_w$)に由来し、 壁面から流入する熱流束が上下で異なる ($q_b < q_t$) ためである (Kawamura ら[17]参照).この非対称性 はポアズイユ乱流における UHF では観察されない [12].クエット乱流では、駆動面である上壁側で流 速が速いため、熱伝達率が高くなり、下壁側に対し 温度 θ が若干高くなる.そのため、UHFにおける温 度のピーク位置はやや上壁側に移動していることが

Table 2 Skin friction coefficient and Nusselt numberdefined by equations (7-9).

D _a	Box size	C_f	UHF		CTD
Re_w		$(\times 10^{3})$	Nu _b	Nut	Nu
3000	Large	9.59	8.87	11.28	6.19
3000[13]	$6h \times h \times 5h$	9.9	-	-	6.5
	Small	7.15	17.25	19.76	13.46
	Medium	6.86	16.38	18.82	12.69
8600	Large	6.90	16.52	18.99	12.85
	Long	6.90	16.44	18.90	12.85
	XL	6.90	16.57	19.04	12.85
12000[14]	$6h \times h \times h$	6.69	-	-	17.2
12800[17]	$3.2h \times h \times 1.6h$	6.42	22.10	24.88	17.83

分かる.一方,CTD では速度分布に由来する非対称性は見られない.

ここで、内層の()*でスケーリングを行うと(図3) 参照),計算領域が小さい場合 (Small), チャネル中 心付近では,他のケースに比べ低い温度分布を示す. 比較のため実験[2,4]およびスペクトル法による DNS[8]の結果も示す.この傾向は、図3にあわせて 示す平均速度分布についても観察される. これは, Small における u_{τ} や T_{τ} が大きくなっているためであ る. また, 速度場と CTD では, $y^+ > 40$ からチャネ ル中央まで対数則に合う領域が見られ、平均分布の レイノルズ数依存性は小さい. これは、チャネル中 央まで平均速度(温度)勾配があるためと考えられ る. 同程度の摩擦レイノルズ数におけるポアズイユ 乱流では、対数領域は表れず、速度欠損則のみが外 層で顕著となる[18].一方,平均温度分布がポアズ イユ型となる UHF では、外層における顕著なレイ ノルズ数依存性が見られる.

クエット流れでは、チャネル中央においても平均 速度勾配をもつため、乱れの生成が行われ、生じた 乱れのエネルギーが乱流拡散により、ポアズイユ乱 流に比べ多くの運動量がチャネル全域に輸送される. 同時に熱輸送も活発になり、クエット乱流とポアズ イユ乱流を同程度の摩擦レイノルズ数で比べたとき、 クエット乱流のヌッセルト数がポアズイユ乱流に比 べ高くなることが考えられる.表2に、各レイノル ズ数・加熱条件において次式から得られる摩擦係数 とヌッセルト数を示す.

$$C_{f} = \frac{\tau_{w}}{\frac{1}{2}\rho u_{m}^{2}} = \frac{2}{u_{m}^{+2}}$$
(7)

$$Nu = \frac{h}{\lambda} \frac{q_w}{\theta_m} = \frac{2 Re_\tau Pr}{\theta_m^+}$$
(8)

ここで (q_w / θ_m) は平均熱伝達率を示す. UHFにおい

ては、上下壁面で平均熱流束 $(q_b < q_t)$ が異なるため、

$$\begin{cases} Nu_{b} = \frac{h}{\lambda} \frac{q_{b}}{\theta_{m}} = \frac{2 Re_{\tau} Pr}{\theta_{m}/T_{\tau,b}} \\ Nu_{t} = \frac{h}{\lambda} \frac{q_{t}}{\theta_{m}} = \frac{2 Re_{\tau} Pr}{\theta_{m}/T_{\tau,t}} \end{cases}$$
(9)

とすると、チャネル上下でヌッセルト数に差が見ら れる ($Nu_b < Nu_t$). 同様の定義によるポアズイユ乱 流でのヌッセルト数は、 $Re_r = 110$ でNu = 7.57 (CTD) および11.6 (UHF) であり[18]、これに比べてクエッ ト乱流におけるNuは大きい値であることが分かる.

また,表2にはDNSで他の研究グループ[13,14,17] が得た C_f とNuを比較として示す.本研究では,これ ら過去に行われたDNSよりも大きい計算領域を用 いている.ここで,計算領域に対する依存性に注目 すると,領域の小さい場合において C_f とNuが大きく なる傾向が見受けられる.このように, Re_w = 8600 の場合を例に取ると,計算領域の影響が無視出来る ためには,Medium以上の計算領域が必要であること がわかる.Smallで得た値は,他の場合の値よりも約 4%大きく見積もられている.次節に示すように, Small以下の計算領域では,主流方向に大規模構造

(もしくは縦渦対)が一波長分も捉えられていない. つまり,この場合に,構造の形成や運動量・熱輸送 についての周期境界条件の影響が顕著になると言え る.

Fig. 4 Instantaneous velocity and temperature field in an (x, y) plane for $Re_w = 8600$ (Large); red, positive fluctuation $(u^{r+}, \theta^{r+} > 1.5)$; blue, negative $(u^{r+}, \theta^{r+} < -1.5)$. The v and w velocities are superimposed as vectors. A large-scale structure that fills the entire gap between the plates can be seen in (a) and (b).

3.2 大規模構造

熱的境界条件に対する構造の違いを観察するため、*Re*_w=8600 (Large)において、同時刻の同 (*z*, *y*)断面内で可視化した瞬時の速度場および各温度場を図4に示す.主流は紙面垂直方向である.ここでの可視化は計算領域全体ではなく、典型的な構造が確

Fig. 5 Instantaneous velocity and temperature field in an (x, y) plane for Re_w =8600 (Large); red, positive fluctuation $(u'^+, \theta'^+>1.5)$; blue, negative $(u'^+, \theta'^+<-1.5)$. The u' and v' velocity fluctuations are superimposed as vectors. Mean flow direction is from left to right. A large-scale structure of fluid with low streamwise velocity which is moved from the lower wall towards the upper one can be seen inside the white dashed box.

認された任意の領域である. 図内のベクトルは断面 に平行な速度成分(v,w)を表し、コンターは u'ま たは0である. 速度場(図 4(a))と CTD(図 4(b)) では、チャネル全幅に及ぶ高速・低速(高温・低温) 領域の発生が確認できる. 瞬時場での大規模な縦渦 対の確認は困難であるが、これら正負に変動した領 域内で大規模な吹き下げ(v'<0)や吹き上げ(v'>0) が発生している傾向が見受けられる. 壁近くでは、 ejection・sweepによって、小さい空間スケールで正 負の変動が生じている. UHF(図 4(c))では、下壁 近傍の温度変動は CTD や速度場と近く、境界条件 による違いは小さい.しかし、チャネル中央部では、 温度変動が小さく、大規模な高温・低温領域は確認 できない. これは、UHFにおいて平均的な温度勾配 がチャネル中央部で零になるためである.

同様に, (x, y) 断面内で可視化した瞬時場(計算 領域の一部)を図5に示す.主流方向は右向きであ る.図5(a, b)の白破線の枠内に注目すると,速度場 と温度場(CTD)において,大規模な吹き上げによ り大規模な低速(低温)領域が発生していることが 確認できる.この可視化からは,その主流方向の長 さや構造は,速度場と温度場(CTD)で同一である ことが見受けられる.また,この白枠内で局所的な 吹き下げや,それに伴う高速(高温)領域が見られ るが,これらは壁近傍のストリーク構造と微細な縦 渦によるものである.図より,その主流方向長さは 1~2h,粘性長さで250~500程度にスケーリングでき る.図中以外の領域では,大規模な吹き下げが起き ている所も同様に存在し,ほぼ同じ空間スケールで 正の変動 (u'>0, $\theta'>0$) が生じており,大規模な運 動量・熱輸送が行われている.一方,UHFでは,チ ャネル中央で変動が弱くなり,上壁側で CTD と逆 符号の温度変動が確認できる.これは,UHFにおけ る平均温度勾配が上壁側 ($d\theta/dy<0$) と下壁側 ($d\theta/dy$ >0) で異なるためである.つまり,チャネル中心を またぐ大規模な吹き上げ・下げが生じた場合に, UHF ではチャネル中心付近で温度変動の正負が逆 転する.

ここで、統計的な構造の空間スケールや形状を知るため、2 次元二点速度相関および温度相関を (z, y) 平面について図 6 に、(x, y) 平面については図 7 に示す. 基準点高さy'は、mid-height (y' = h/4) とし、 チャネル上下間での相関を評価する. 二点相関 R_{ij} は次式により得ている.

$$\begin{cases} R_{ij}(\Delta z, y, y') = \frac{\overline{u'_i(x, y', z) \cdot u'_j(x, y, z + \Delta z)}}{u'_{irms}(y') \cdot u'_{jrms}(y)} \\ R_{ij}(\Delta x, y, y') = \frac{\overline{u'_i(x, y', z) \cdot u'_j(x + \Delta x, y, z)}}{u'_{irms}(y') \cdot u'_{jrms}(y)} \end{cases}$$
(10)

速度場において図 6(a)の R_{uu} の分布が上壁面まで相 関が高く、チャネル全幅 (y 方向)におよぶ大規模 構造が確認できる.さらに、スパン方向に $\Delta z \approx \pm h$ の 位置で負の相関が、 $\Delta z \approx \pm 2.3h$ で正の相関が表れ、準 周期的な構造が見受けられる.図 6(b)の R_{uv} に注目 すると、基準点付近で負値(-0.4 程度)、上壁側ま で負の領域が広がっている.また、 $\Delta z \approx \pm h$ で相関が 正の領域が現れ、これは、縦渦対によって大規模な 主流方向速度変動が生じていることと矛盾しない.

Fig. 6 Contours of the two-dimensional two-point correlation coefficient as a function of spanwise and wall-normal separation, $R_{ij}(\Delta z, y, y')$ defined by equation (10), for $Re_w = 8600$ (XL): (a) R_{uu} , (b) R_{uv} , (c, e) $R_{\theta\theta}$, (d, f) R_{θ} ; (c, d) for CTD, (e, f) for UHF. The location of the fixed correlation point is y'/h = 0.244 ($y'^+ = 61$). The solid contours denote positive correlation, and dashed contours negative. The contour increment is 0.04 (a, c, e) and 0.02 (b, d, f).

Fig. 7 Contours of the two-dimensional two-point correlation coefficient as a function of streamwise and wall-normal separation, $R_{ii}(\Delta x, y, y')$ defined by equation (10), for $Re_w = 8600$ (XL): (a) R_{uu} , (b, c) $R_{\theta\theta}$; (b) for CTD, (c) for UHF. The location of the fixed correlation point is y'/h = 0.244 ($y'^+ = 61$). The solid contours denote positive correlation, and dashed contours negative. The contour increment is 0.04.

温度場(CTD)においても同様に説明できる大規模 な構造をもつことが、 $R_{\theta\theta} \geq R_{\theta}$ の分布から確認でき る(図 6(c, d)参照). UHFにおいては、前述したよ うにチャネル中央部を境に温度変動の正負が逆にな るため、図 6(e)のように上壁側での相関 $R_{\theta\theta}$ がなく なる(もしくは、小さいながらも逆符号の相関が確 認される).図 6(f)に示す相関係数 R_{θ} の分布は、上 壁側と下壁側で相関の正負が逆転している.つまり、 外層で生じた吹き上げはチャネル全幅(y 方向)に および、下壁側で負の温度変動、上壁側で正の温度 変動を生じさせている.吹き下げの場合は、下壁側 で正、上壁側で負の温度変動が生じる.

図 7 の主流方向における 2 次元二点相関 $R_{ij}(\Delta x, y, y)$ からは、大規模な速度・温度変動の構造は上壁側 下流に伸び、y 軸に対して傾いた構造であることが 分かる.速度場および温度場ともに $\Delta x \approx \pm 15 \sim 20h$ 離 れた所に負の相関 ($R_{uu} < 0$, $R_{\theta\theta} < 0$)が表れている. 相関の基準点から離れても($\Delta x > 40h$,矢印 A 付近), 相関係数が有意な値をもつことから、主流方向にも 準周期的に大規模構造が生じていることが分かる. UHF の相関係数 $R_{\theta\theta}$ の分布に注目すると、基準点の 上壁側やや下流(図中に示す領域 B)において、 $R_{\theta\theta}$ が顕著に負となる一方、下壁側については、CTD と 同様に $\Delta x \approx \pm 15 \sim 20h$ で相関が負となる.このため、 図 7(c)に見るように、基準点やや下流で CTD とは逆 向き(右下向き)の負の領域が表れている.

上記の2次元二点相関は、本計算で最大の計算領 域において得た結果である.ここで、計算領域およ びレイノルズ数を変え、それに対する大規模構造の 依存性について検討する.図8に、壁近傍またはチ ャネル中央におけるスパン方向二点相関係数、 R_{uu} (Δz)および $R_{\theta \theta}(\Delta z)$ の分布を示す.

$$R_{ij}(\Delta z) = \frac{u'_i(x, y, z) \cdot u'_j(x, y, z + \Delta z)}{u'_{irms}(y) \cdot u'_{jrms}(y)}$$
(11)

図 8(a)の壁近傍では、いずれのケースでも∆z⁺≈50 に相関係数の極小値があり, 準秩序構造としてよく 知られるストリーク構造の存在を示唆している.強 い負の相関を示す間隔がレイノルズ数によって異な っている.まず, Rew = 8600 においては, スパン方 向にΔz⁺=250~300 で負のピーク値を示すが、これは Δz=1~1.2hに相当し、後に示すチャネル中央で顕著 な大規模構造の間隔とよく一致する. 同様の傾向が Rew = 3000の場合でも見られるが、ストリーク構造 $(\Delta z^+ = 50$ で負の相関) と大規模構造 $(\Delta z = 1 \sim 1.2h)$ で負の相関)間の空間スケールの差が小さいため, 両者の二点相関に及ぼす影響を区別することは難し い.よって、図 8(a)の間隔 4z⁺が開いたときのレイノ ルズ数による差異は、チャネル幅hでスケーリング することで小さくなる.外層の構造が壁近傍にまで 影響する傾向は、粘性長さと外層スケール間に大き く差がある場合(高レイノルズ数)に、例えばポア ズイユ乱流においても見受けられる(Abe ら[11]の 図10参照).しかし、比較的レイノルズ数が低い場 合でも,外層の影響が壁近傍に顕著に現れる傾向は, クエット乱流の特徴である.

(a) at the near-wall region.

Fig. 8 Spanwise two-point correlation coefficient of streamwise velocity fluctuation or temperature fluctuation.

図 8(b)のチャネル中央において h でスケーリング すると、相関の最小値(強い負の相関)が $\Delta z \approx 1.2h$ に表れ、大規模構造の間隔を示している.このスパ ン方向間隔におけるレイノルズ数依存性は弱く、空 間的波長 λ で示せば、 $\lambda_z \approx 2.4h$ 程度である.Kawamura ら[17]の DNS では構造を捉えるには計算領域が小さ いため、スパン方向間隔が計算領域サイズに固定さ れていると考えられる.また、本計算でも $L_z < 8h$ の 場合に、 $\lambda_z \approx 2.1h$ 程度にスパン方向間隔が縮められ ている.チャネル中央における UHF での相関が、 速度場や CTD に比べて小さいことが分かるが、上 記の長波長成分($\lambda_z \approx 2.4h$)が支配的であることは同

Fig. 9 Streamwise two-point correlation coefficient of streamwise velocity fluctuation or temperature fluctuation at the channel center.

様である.

異なる熱的境界条件による違いは、図9で示した 主流方向二点相関係数の分布で顕著に見られる.速 度場と CTD において計算領域への依存性が表れて いる一方で, UHF では計算領域による有意な差は見 られない. まず, 速度場と CTD における相関係数 分布に注目する. Small においては相関が零に落ち ず,計算領域が大規模構造を捉えられていない.領 域を $L_x \ge 32h$ まで拡大することで(Medium やLarge), 主流方向に有限長の構造が1波長分だけ捉えられて いる. さらなる領域拡大で数波長分の大規模構造を 捉え,相関は零に漸近している. UHF で得る相関 $R_{\theta\theta}(\Delta x)$ は, Small の場合でも相関が零に漸近してい る. UHF の計算領域 XL に注目すると,約 24h の間 隔で,弱い相関の変動が見られる.一方,速度場及 び CTD では、より長い間隔で強い相関の変動が表 れている.また、レイノルズ数依存性が速度場と CTD に見られ, Rew = 3000 では相関が負に落ちるこ とはなく徐々に小さくなり,有限長の大規模構造の 影響が観察されない. これは、レイノルズ数が低い ため ($Re_{\tau} = 52$), 壁の粘性がチャネル中央部までお よび、大規模構造よりも粘性長さスケールの構造が 支配的になるためと考えられる. Rew = 8600 におい ても、チャネル中央部で大規模領域がなくなる UHF では, CTD のようなレイノルズ数依存性は見受けら れない.

スパン方向における空間的な速度変動および温

Fig. 10 Pre-multiplied energy spectra $k_z^+ E_{ii}^+ (k_z)$ as a function of spanwise wavelength λ_z .

度変動のエネルギースペクトルを示す.ここで、1 次元エネルギースペクトルは、次式のように定義される.

$$\begin{cases} \int_0^\infty E_{uu}(k_x) dk_x = \int_0^\infty E_{uu}(k_z) dk_z = u'^2_{rms} \\ \int_0^\infty E_{\theta\theta}(k_x) dk_x = \int_0^\infty E_{\theta\theta}(k_z) dk_z = \theta'^2_{rms} \end{cases}$$
(12)

スペクトル強度は単位波数あたりのエネルギー含有 量と解釈できるが、スペクトル強度に波数をかけた 量を pre-multiplied スペクトルと呼んでいる. これに よると、横軸を波数または波長 $\lambda_i = 2\pi/k_i$ の対数に対 してプロットしたときにエネルギー含有量を示す指 標となることが知られている[19,20]. このとき現れ るピークの波長 (most energetic wavelength, MEW) が、場に現れる空間的な構造の平均間隔に良く一致 することが知られている.図10に横軸をスパン方向 の波長 λ_{r} としてプロットしている. 壁近傍 ($y^{+}=5$) において, MEW は速度場・温度場ともにえ≈0.4h 付近に現れている.これは壁面量でん⁺≈100に相当 し,壁面近傍の準秩序的なストリーク構造の間隔と 良く一致している. 速度場と温度場のいずれも, 短 波長領域において計算領域による有意な影響は見受 けられない(微小な差異は、計算格子幅の違いによ るもの). チャネル中央でのMEW は λ_z =2.1~2.5hで,

Fig. 11 Pre-multiplied energy spectra normalized by the RMS values as a function of streamwise wavelength at the channel center.

これは Tillmark [4]の実験と良く一致し,渦構造のス パン方向間隔が 2.0~2.5h という結果が出ている.本 計算では,計算領域の拡大によって MEW とそのエ ネルギー含有量に変化が見られている.他のケース

(Large 以上の計算領域)に比べ,主流方向に1波 長分捉えた Medium における MEW のエネルギーが 小さいことが分かる. また, Long では, Large に比 べ計算領域が主流方向に長くても、スパン方向に狭 いためエネルギーが小さくなっている. Large から XL への拡大(主流方向計算領域を2倍)により, u' における MEW がん =2.1h と 2.5h で同程度となって いる (温度場 θ での MEW は λ =2.1h). これらのこと より、計算領域拡大に伴い大規模構造が空間的に揺 らぐようになり, また, エネルギー含有量が増える と言える. つまり, 大規模構造が持つ真のエネルギ 一含有量を得るには、周期境界の影響が十分に無視 できるまでに計算領域を拡大する必要がある. さら に、壁近傍のスペクトルにも局所的な長波長域での ピークが見られ、チャネル中心での MEW の長波長 と一致する. つまり, 外層で支配的な大規模構造の 低波数成分が、壁近傍の速度・温度変動エネルギー にも寄与している.

主流方向についても、横軸を主流方向波数&に対 して pre-multiplied スペクトルを図 11 に示す. 図は、 速度場と温度場のそれぞれにおけるチャネル中央で のスペクトル分布である.ここで、それぞれの値を RMS 値で正規化して示す.これは、変動エネルギー 中に占める各波数エネルギーを全エネルギーに対す る割合として比較することで、変動強度の異なる物 理量について相互比較するためである.図 11 では、 短波長と長波長で2つのピークが見受けられるが、

Fig. 12 Temperature variance.

短波長域の MEW はテイラーマイクロスケール等で スケーリングされる構造であり、長波長域のん= 24~48h が大規模構造のスケールに相当する.この長 波長域における MEW に注目すると、速度場 (λ_{r} = 32h) · CTD (48h) · UHF (24h) でそれぞれエネル ギー含有率の大きい波数が異なる点が興味深い. 速 度場と CTD に比べ, UHF においては長波長域の面 積が小さく、長波長の占めるエネルギーが弱いこと が分かる.これは、図9が示す傾向とも良く一致し ている.図7の2次元二点相関で示したように(UHF については下壁面側の分布),主流方向の大規模構造 の間隔にこの様な差は見受けられず、速度場と温度 場においてその主流方向間隔はほぼ同一である. つ まり、物理空間(実際の速度場や温度場)で表れる 大規模構造の空間的スケールは同じでも、最も支配 的なエネルギー波数は速度場と温度場で必ずしも一 致していない.

3.3 乱流統計量

前節で,温度場における大規模構造の空間的スケ ールや空間的変動のエネルギースペクトルに注目し てきた.本節では各種乱流統計量を,計算領域と大 規模構造による影響に注目しながら示していく.特 に,*Rew* = 8600 において有限長の構造を捉え得なか った Small の結果と他ケースの結果の間に見られる 差,およびレイノルズ数依存性について検討してい く.

温度変動の RMS 値を図 12 に示す. 両熱的境界条 件共に,平均温度勾配が大きい壁近傍でピーク値を 示す. UHF において平均温度分布の上下非対称性に 起因して,温度バリアンス等の統計量にも若干の上 下非対称性が現れている.上壁側のピークが下壁に 比べ低くなっていることが分かるが,ピーク位置は 内層のスケーリングにより,ポアズイユ乱流ともよ く一致する.一方, CTD では上下非対称性は見受け られない. Liu [13]の DNS による結果は本計算と傾 向は良く合うが、幾分高い値となっている. Komminaho ら[8]の DNS から得た知見によれば、計 算領域が非常に短い場合に乱流強度のピーク値は極 端に高い値となる. このことから、Liu の結果と完 全に一致しないのは,彼の計算領域(表2参照)が 構造を十分に捉えるほどの大きさではないためと考 えられる.計算領域への依存性ついて, Small で得 た値が他のケースに比べて外層全域で約5%小さい. これは, Small の計算領域ではエネルギーを持つ長 波長成分 (図 11 参照) が捉えられていないためと考 えられる. 両熱的境界条件の壁近傍におけるピーク 値に注目すると, UHF において顕著なレイノルズ数 依存性が見受けられる.しかし,チャネル中央部で は UHF におけるレイノルズ数依存性は小さい. -方, CTD はチャネル中央まで, 壁面量によるスケー リングが良く成り立つ. これらは温度バリアンスに おけるエネルギー収支(輸送方程式)から説明でき る.

ここで、温度バリアンスのエネルギー収支を図 13 に示す. 収支の残差は十分に小さく、 $Re_w = 8600$ の 各計算領域における結果はいずれも良く一致してい る (Medium, Large, Long の結果は非掲載). この 分布における熱的境界条件での違いは、チャネル中 心において、CTD の生成項はある一定値を保つこと に対し、UHF の生成項の値は零になることである. k_{θ}^+ の生成項は、

$$\frac{P_{\theta}^{+}}{Pr} = -\overline{v'^{+}\theta'^{+}} \frac{\partial\overline{\theta}^{+}}{\partial y^{+}} = -\overline{v'^{+}\theta'^{+}} \left(q_{total}^{+} + \overline{v'^{+}\theta'^{+}}\right)$$
(13)

であり, $-v'^{+}\theta'^{+}$ が q^{+}_{total} の半値になる高さ y_{max} で, P_{θ}^{+} は最大値をとる. CTDのとき,式(13)の q^{+}_{total} =1であ るのでレイノルズ数に依らず,図13(a)のように $P_{\theta}^{+}_{max}=Pr/4$ をとる.さらに,CTDではいずれの項も, 壁面量でよくスケーリングされる.一方,UHFにお けるピーク値は,

$$P_{\theta \max}^{+} \approx \frac{Pr}{4} \left(1 - \frac{y_{\max}^{+}}{Re_{\tau}} \right)^{2}$$
(14)

となる. y^+_{max} はレイノルズ数に依らずほぼ一定値を とるので、図13(b)のように Re_τ が減少するにつれて

Fig. 13 Budget of temperature variance.

生成項も小さくなることが分かる. 乱流拡散項と分子拡散項のレイノルズ数依存性は, 両境界条件とも小さいが, *Rew*=3000においては乱流拡散項によるバッファー層からチャネル中央部へのエネルギー輸送が顕著になる. 特に, UHFではチャネル中央で乱流拡散項と散逸が釣り合っている(図13(b)). *Rew*=8600 (CTD)においてはチャネル中央部で生成と散逸が等しく局所平行状態を保っている(図13(a)). 計算領域の影響については, Smallにおける生成項がXLでの値よりわずかに小さくなっているが, 他の項についてもほとんど有意な差は見られない.

4 結 言

最大で 96h×h×12.8h の計算領域を用いて, 乱流熱 伝達を伴う平面クエット流れにおける直接数値シミ ュレーションを行った. レイノルズ数は Re_w = 3000 と 8600 に設定し, 摩擦レイノルズ数でそれぞれ Re_r = 52 と 126~129 に相当する. 流れ方向の計算領域を 段階的に変えることで, 異なる熱的境界条件におけ る温度場を含めた乱流構造, 特に外層における大規 模構造についての知見を集めた.各種統計量を求め, それらに対する構造の影響についても議論した.

クエット乱流においては、チャネル幅スケールの 縦渦対によって、CTDでは速度場に似た大規模な高 温・低温領域が発生する.他方 UHFでは、内層に おいては低波数成分の影響が顕著ではあるが、チャ ネル中央での構造はほとんど存在しない.大規模構 造は、速度場・温度場ともに、主流方向に 32~48h、 スパン方向に 2.1~2.5hのスケールをもつ.この有限 長の構造を捉えることにより、摩擦係数は約4%の、 熱伝達率では約5%の差異が生じている.各種乱流 統計量を十分精度良く得る上で、十分な計算領域に よる大規模構造の把握は重要であることが示された.

謝辞

本研究の一部は私学・学術フロンティア推進事業 「ホリスティックアプローチによる計算科学の新展 開」による支援を,第一著者は日本学術振興会特別 研究員奨励費(18-81)の援助を受けた.本計算は九州 大学情報基盤センター及び東北大学情報シナジーセ ンター大規模科学計算システムを利用して行った. また,本計算の一部は,東京理科大学大学院・羽根 将吾君の協力のもとに行われた.記して謝意を表す.

参考文献

- [1] Robertson, J. M. and Johnson, F., "Turbulence structure in plane Couette flow", *J. Eng. Mech. Div. Proc. ASCE*, **96** (1970), 1171-1182.
- [2] El Telbany, M.M.M. and Reynolds, A.J., "The structure of turbulent plane Couette flow", *Trans. ASME* I: *J. Fluids Eng.*, **104** (1982), 367-372.
- [3] 中林功一,鬼頭修己,足立昌俊,池谷徹,"平 行平板間乱流クエット流れの乱れ構造",*日本 機械学会論文集*,**60**-578,B(1994),3249-3255.
- [4] Tillmark, N., "Experiments on transition and turbulence in plane Couette flow", *Ph.D. Thesis* (1995), Royal Inst. of Technology, Stockholm.
- [5] Kitoh, O., Nakabayashi, K. and Nishimura, F., "Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure", J. Fluid Mech., 539 (2005), 199-227.
- [6] Miyake, Y., Kajishima, T. and Obana, S., "Direct numerical simulation of plane Couette flow at transitional Reynolds number", *JSME Int. J.*, **30**-259, B (1987), 57-65.
- [7] Lee, M. J. and Kim, J., "The structure of turbulence in a simulated plane Couette flow", *Turbulent*

Shear Flows, 8 (1991), 5.3.1-5.3.6.

- [8] Komminaho, J., Lundbladh, A. and Johansson, A.V., "Very large structures in plane turbulent Couette flow", *J. Fluid Mech.*, **320** (1996), 259-285.
- [9] Tsukahara, T., Kawamura, H. and Shingai, K., "DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region", *J. Turbulence*, 7 (2006), No. 19.
- [10] Kawamura, H., Ohsaka, K., H., Abe, H., and Yamamoto, K., "DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid", *Int. J. Heat and Fluid Flow*, **19** (1998), 482-491.
- [11] Abe, H., Kawamura, H. and Matsuo, Y., "Surface heat-flux fluctuations in a turbulent channel flow up to Re_{τ} =1020 with Pr=0.025 and 0.71", *Int. J. Heat and Fluid Flow*, **25** (2004), 404-419.
- [12] 関洋治,阿部浩幸,河村洋,"異なる熱的境界 条件における平行平板間乱流熱伝達の DNS に よる熱的統計緒量の比較",日本機械学会論文 集,70-696,B (2004), 2089-2096.
- [13] Liu, C.-H., "Turbulent plane Couette flow and scalar transport at low Reynolds number", *Trans. ASME* C: J. Heat Transfer, **125** (2003), 988-998.
- [14] Debusschere, B. and Rutland, C. J., "Turbulent scalar transport mechanisms in plane channel and

Couette flows", Int. J. Heat and Mass Transfer, 47 (2004), 1771-1781.

- [15] Le, P. M. and Papavassiliou, D. V., "Turbulent heat transfer in plane Couette flow", *Trans. ASME C: J. Heat Transfer*, **128** (2006), 53-62.
- [16] Kawamura, H. and Kondoh, Y., "Application of consistent finite difference scheme to DNS of turbulent heat transfer in channel flow", *Proc. 3rd KSME/JSME Thermal Eng. Conf.*, 1 (1996), 53-58.
- [17] Kawamura, H., Abe, H. and Shingai, K., "DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions", *Turbulence, Heat and Mass Transfer 3* (2000), 15-32.
- [18] Tsukahara, T., Iwamoto, K., Kawamura, H. and Takeda, T., "DNS of heat transfer in a transitional channel flow accompanied by a turbulent puff-like structure", *Turbulence, Heat and Mass Transfer 5* (2006), 193-196.
- [19] Perry, A.E., Henbest, S. and Chong, M.S., "A theoretical and experimental study of wall turbulence", *J. Fluid mech.*, **165** (1986), 163-199.
- [20] Jiménez, J., "The largest scales of turbulent wall flows", CTR. Ann. Research Briefs (1998), 137-154.